Оксимы (или изонитрозосоединения) — органические соединения, включающие в себя одну или несколько изонитрозогрупп RR1C=N-OH. Обычно рассматриваются как производные альдегидов (R1 = H) — альдоксимы и кетонов — кетоксимы[1]. Для альдоксимов и оксимов несимметричных кетонов характерна цис-транс-изомерия по связи C=N.
Физические свойства
правитьОксимы обычно легкоплавкие твердые вещества, в чистом виде — белого цвета. Плохо растворяются в воде, хорошо в органических растворителях. Цис- и транс- изомеры различаются по физическим свойствам (температура плавления, спектры), взаимное превращение стереоизомеров происходит при действии кислот или облучении светом.
В ИК-области в спектрах оксимов наблюдаются слабые полосы валентных колебаний связей O-H при 3650-3500 см−1 и C=N при 1690—1650 см−1; валентные колебания N-O обуславливают сильную полосу поглощения при 960—930 см−1.
Методы синтеза
правитьСинтез с образованием связи C=N
правитьНаиболее распространенным лабораторным методом синтеза оксимов является реакции альдегидов и кетонов с гидроксиламином:
- CH3COCH3 + NH2OH CH3(C=N-OH)CH3 + H2O
Сходным методом является взаимодействие водного гидроксиламина с алкинами, формально являющимися предшественниками карбонильных соединений[2]:
- R1С≡СR2 + H2NOH R1СH2C(=N-OH)R2
Другим широко используемым методом является изомеризация нитрозосоединений, содержащих водород в α-положении к нитрозогруппе:
Такая изомеризация проходит in situ при нитрозирования некоторых алканов (например, циклогексана нитрозилхлоридом NOCl) или соединений с активированной метильной либо метиленовой группой:
- PhCOCH3 + C5H11ONO [ PhCOCH2N=O ] PhCOCH=N-OH
Аналогично проходит нитрозирование некоторых замещенных толуолов: нитротолуолы при взаимодействии с алкилнитритами в присутствии алкоксидов образуют соответствуюцие альдоксимы.
Нитрозирование замещенных нитрометанов также приводит к вводу оксимной группы при атоме углерода с образованием геминальных нитрооксимов - нитроловых кислот:
- RCH2NO2 + HNO2 RC(NO2)=NOH + H2O
Окисление или восстановление азота в C-N - соединениях
правитьОксимы также могут быть синтезированы окислением первичных аминов:
- RR1CH-NH2 + H2O2 RR1C=NOH + H2O
либо восстановлением нитросоединений:
- RCH2NO2 + [H] RCH=NOH + H2O
Введение фрагмента CH=NOH
правитьСпецифическим методом синтеза ароматических оксимов является прямое введение альдоксимной группы в ароматическое ядро конденсацией бензола, его алкилпроизводных и фенолов с фульминатом ртути в присутствии хлорида алюминия:
- C6H6 + Hg(ONC)2 C6H5CH=NOH
Реакционная способность
правитьОксимы проявляют амфотерные свойства, являясь как очень слабыми основаниями, так и слабыми кислотами (pKa ~ 11, pKb ~ 12).
Оксимы под действием алкоголятов щелочных металлов депротонируются, образуя соответствующие соли, они также могут образовывать соли с переходными металлами, в последнем случае возможно комплексообразование, особенно в случае бидентантных оксимов. Так, например, диметилглиоксим (реактив Чугаева) образует с двухвалентным никелем прочный нерастворимый комплекс; эта реакция используется для гравиметрического определения никеля.
Реакции по нуклеофильным центрам
правитьПодобно карбонильному углероду альдегидов и кетонов, углерод оксимной группы является электрофильным центром, однако его электрофильность существенно ниже карбонильного углерода из-за меньшей, чем у кислорода, электроотрицательности азота.
Оксимы являются амбидентантными нуклеофилами, способными алкилироваться и по атому кислорода, и по атому азота: так, соли оксимов с щелочными металлами алкилируются алкилгалогенидами с образованием O-алкилоксимов:
- RR1C=NOH + C2H5ONa RR1C=NONa + C2H5OH
- RR1C=NONa + R2I RR1C=NOR2 + NaI
Алкилирование может идти и по атому азота, в этом случае образуются нитроны, к образованию нитронов ведет также присоединение к оксимам α,β-ненасыщенных карбонильных соединений[3]:
Ацилирование оксимов ангидридами и хлорангидридами карбоновых кислот, а также азлактонами[4] ведет к образованию O-ацилоксимов, реакцию обычно проводят в присутствии органических оснований (пиридин и т.п.)[5]:
- RR1C=NOH + R2COX RR1C=NOCOR2 + XH ,
вместе с тем в некоторых случаях ацилирование ангидридами карбоновых кислот идет с высокими выходами и в отсутствие оснований: так, ацилирование оксима ацетофенона двукратным количеством уксусного ангидрида в отсутствие растворителя и основания дает O-ацетилпроизводное оксима ацетофенона с выходом 90%[6].
Под действием кислотных и ацилирующих агентов (PCl5, P2O5, полифосфорные кислоты, хлорангидриды сульфокислот, ангидриды карбоновых кислот в жестких условиях) альдоксимы отщепляют воду с образованием нитрилов, так, оксим пентаацетил-D-глюкозы при нагревании в уксусном ангидриде в присутствии ацетата натрия образует пентаацетилглюкононитрил с выходом в 50%)[7]:
- RCH=NOH + Ac2O RCN + 2 AcOH
Кетоксимы в таких условиях перегруппировываются в амиды.
При взаимодействии с азотистой кислотой кетоксимы образуют N-нитроимины[8]:
- R2C=NOH + HNO2 R2C=N-NO2 + H2O
Окисление и восстановление оксимов
правитьЭнергичными восстановителями оксимы восстанавливаются до аминов, также возможно восстановление до N-замещенных гидроксиламинов.
Оксимы дегидрируются с образованием иминоксильных радикалов:
- R2C=NOH R2C=N-O•
Под действием перокситрифторуксусной кислоты, получаемой in situ из трифторуксусного ангидрида и перекиси водорода, оксимы окисляются до нитросоединений; в случае циклогексаноноксима реакцию проводят в кипящем ацетонитриле в присутствии буфера, при окислении оксимов α-дикетонов в α-нитрокарбонильные соединения в качестве растворителя может быть использован хлороформ или трифторуксусная кислота, необходимости в буфере в этом случае нет, предполагается, что первоначально образуется аци-форма нитросоединения, которая затем таутомеризуется:
- RCOCR=NOH + CF3COOOH RCOCR=NO(OH) RCOCHRNO2
N-бромсукцинимид (NBS) реагирует с оксимами с образованием соответствующего гем-бромнитрозопроизводного:
- R2C=NOH + NBS R2CBr(NO)
Под действием азотной кислоты кетоксимы дают гем-нитронитрозосоединения (псевдонитролы):
- R2C=NOH + HNO3 R2CNO(NO2) ,
альдоксимы нитруются до изомерных (и, в случае альдоксимов и таутомерных) псевдонитролам нитроловых кислот:
- RCH=NOH + HNO3 R(CO)C(NO2)=NOH + H2O
Ароматические альдоксимы хлорируются с образованием гидроксамоилхлоридов (хлорангидридов иминных таутомеров гидроксамовых кислот, которые, в свою очередь, могут быть превращены в оксиды нитрилов[9]:
- Ph-CH=NOH + Cl2 Ph-CCl=NOH + HCl
- Ph-CCl=NOH + Et3N Ph-C≡N+-O-
Перегруппировки оксимов
правитьКетоксимы под действием кислотных и ацилирующих агентов перегруппировываются в амиды (Перегруппировка Бекмана). Перегруппировка стереоспецифична — к азоту мигрирует радикал, находящийся в транс-положении к гидроксилу:
- RR1C=NOH RCONHR1
Перегруппировка Бекмана циклогексаноноксима является промышленным методом синтеза капролактама — мономера капрона (найлона-6):
Перегруппировку Бекмана также претерпевают O-замещённые кетоксимы (сложные эфиры оксимов, перегруппировка Бекмана-Чепмена):
- RR1C=NOR2 RCONR1R2
Перегруппировка Бекмана может проходить и под действием P2S5, выступающего в роли и катализатора перегруппировки, и тионирующего агента, продуктом реакции в этом случае являются тиоамиды. Так, бензальдоксим в этих условиях образует тиобензамид[10]:
- PhCH=NOH + P2S5 PhCSNH2 ,
бензофеноноксим перегруппировывается в тиобензанилид[11]:
- (Ph)2C=NOH + P2S5 PhCSNHPh
α-Гидроксикетоксимы в условиях перегруппировки Бекмана расщепляются с образованием альдегида и нитрила (расщепление по Бекману или перегруппировка Вернера):
- RCH(OH)CR1=NOH RCHO + R1CN + H2O
O-сульфонаты оксимов алифатических кетонов под действием оснований претерпевают перегруппировку, образуя азирины, гидролизующиеся далее до α-аминокетонов (перегруппировка Небера), эта реакция является синтетическим методом α-аминирования кетонов[12]:
Применение
правитьНекоторые оксимы (аллоксим, диэтиксим, дипироксим, изонитрозин, пралидоксим) являются реактиваторами холинэстеразы и используются в качестве антидотов при отравлениях фосфорорганическими инсектицидами.
Оксим циклогексанона является крупнотоннажным продуктом, используемым в производстве капролактама.
Диметилглиоксим используется в аналитической химии для обнаружения и количественного определения никеля («реактив Чугаева»), никелевый комплекс этого вещества (диметилглиоксимат никеля) используется в качестве красного пигмента.
См. также
правитьПримечания
править- ↑ IUPAC Gold Book: oximes Архивная копия от 21 октября 2012 на Wayback Machine
- ↑ "Intermolecular retro-Cope Type Hydroxylamination of Alkynes with NH2OH: E-1-(1-Hydroxycyclohexyl)ethanone oxime". Organic Syntheses. 90: 87. 2013. doi:10.15227/orgsyn.090.0087. eISSN 2333-3553. ISSN 0078-6209. Архивировано 7 февраля 2021. Дата обращения: 2 февраля 2021.
{{cite journal}}
:|archive-date=
/|archive-url=
несоответствие временной метки; предлагается 7 февраля 2021 (справка) - ↑ Nakama, Kimitaka; Sumito Seki, Shuji Kanemasa. A new synthetic access to N-alkylated nitrones through Lewis acid-catalyzed conjugate additions of aldoximes (англ.) // Tetrahedron Letters[англ.] : journal. — 2001. — Vol. 42, no. 38. — P. 6719—6722. — ISSN 0040-4039. — doi:10.1016/S0040-4039(01)01346-6.
- ↑ Kumar, Pradeep; Mukerjee, Arya (1979). "Acylation of Primary Amines by O-Acyl Oximes". Synthesis. 1979 (9): 726–727. doi:10.1055/s-1979-28815. Архивировано 7 июня 2024. Дата обращения: 7 июня 2024.
{{cite journal}}
:|archive-date=
/|archive-url=
несоответствие временной метки; предлагается 7 июня 2024 (справка) - ↑ 5.04.7 Acyloximes and Related Systems // Katritzky, Alan R. Comprehensive Organic Functional Group Transformations / Alan R. Katritzky, Christopher J. Moody, Otto Meth-Cohn … [и др.]. — Elsevier, 2003-03-21. — ISBN 978-0-08-042326-5.
- ↑ Huang, Huawen (2023). "Synthesis of 2-Phenyl-4,6-bis(trifluoromethyl)pyridine via NH4I/Na2S2O4-Mediated Cyclization of Ketoxime Acetates". Organic Syntheses. 100: 248–270. doi:10.15227/orgsyn.100.0248. ISSN 2333-3553. Архивировано 7 июня 2024. Дата обращения: 7 июня 2024.
{{cite journal}}
:|archive-date=
/|archive-url=
несоответствие временной метки; предлагается 7 июня 2024 (справка) - ↑ "PENTAACETYL d-GLUCONONITRILE". Organic Syntheses. 20: 74. 1940. doi:10.15227/orgsyn.020.0074. ISSN 2333-3553. Архивировано 7 июня 2024. Дата обращения: 7 июня 2024.
{{cite journal}}
:|archive-date=
/|archive-url=
несоответствие временной метки; предлагается 7 июня 2024 (справка) - ↑ Silva, Emerson (2018). "Preparation of N-(1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ylidene)nitramide". Organic Syntheses. 95: 192–204. doi:10.15227/orgsyn.095.0192. ISSN 2333-3553. Дата обращения: 23 февраля 2021.
- ↑ Diphenylcarbodiimide (англ.) // Organic Syntheses[англ.] : journal. — 1969. — Vol. 49. — P. 70. — ISSN 23333553 00786209, 23333553. — doi:10.15227/orgsyn.049.0070. Архивировано 15 марта 2016 года.
- ↑ Li, Jiangsheng; Cheng, Chao; Zhang, Xinrui; Li, Zhiwei; Cai, Feifei; Xue, Yuan; Liu, Weidong. Facile Synthesis of Thioamides via P2S5-Mediated Beckmann Rearrangement of Oximes (англ.) // Chinese Journal of Chemistry : journal. — 2012. — Vol. 30, no. 8. — P. 1687—1689. — ISSN 1614-7065. — doi:10.1002/cjoc.201200448. Архивировано 27 октября 2016 года.
- ↑ Ferguson, Lloyd N. The Synthesis of Aromatic Aldehydes. (англ.) // Chemical Reviews[англ.] : journal. — 1946. — Vol. 38, no. 2. — P. 227—254. — ISSN 0009-2665. — doi:10.1021/cr60120a002.
- ↑ P. W. Neber, A. v. Friedolsheim: Über eine neue Art der Umlagerung von Oximen. In: Liebigs Ann. 1926, 449. 109—134.