Эллиптический оператор

Эллиптический оператор — дифференциальный оператор 2-го порядка в частных производных. Является частным случаем гипоэлиптического оператора

Определение

править

Дифференциальный оператор   называется эллиптическим оператором, если квадратичная форма   имеет один и тот же знак для всех  [1].

Применение эллиптических операторов

править

Эллиптические операторы применяются для исследования и решения эллиптических уравнений. Любое эллиптическое уравнение можно записать в виде  . Так же свойства операторов используются при построении численных методов для решения уравнений. В некоторых случаях эти результаты обобщаются на параболические и гиперболические уравнения (при дискретизации этих уравнений только по времени получаются эллиптические уравнения для каждого временного слоя).

Примеры эллиптических операторов

править
  • Оператор Лапласа, записывается в виде  
  • Обобщения оператора Лапласа, оператор вида  , где  . Собственные значения такого оператора находятся из задачи Штурма-Лиувилля. На множестве функций   (  пространство Лебега на  ) данный оператор является самосопряжённым и положительно определённым[2].
  • Примером нелинейного эллиптического оператора является оператор  


Примечания

править
  1. Миранда К. Уравнения с частными производными эллиптического типа. — Москва: издательство иностранной литературы, 1957. — 256 с.
  2. Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.