Эллиптический оператор — дифференциальный оператор 2-го порядка в частных производных. Является частным случаем гипоэлиптического оператора
Определение
правитьДифференциальный оператор называется эллиптическим оператором, если квадратичная форма имеет один и тот же знак для всех [1].
Применение эллиптических операторов
правитьЭллиптические операторы применяются для исследования и решения эллиптических уравнений. Любое эллиптическое уравнение можно записать в виде . Так же свойства операторов используются при построении численных методов для решения уравнений. В некоторых случаях эти результаты обобщаются на параболические и гиперболические уравнения (при дискретизации этих уравнений только по времени получаются эллиптические уравнения для каждого временного слоя).
Примеры эллиптических операторов
править- Оператор Лапласа, записывается в виде
- Обобщения оператора Лапласа, оператор вида , где . Собственные значения такого оператора находятся из задачи Штурма-Лиувилля. На множестве функций ( пространство Лебега на ) данный оператор является самосопряжённым и положительно определённым[2].
- Примером нелинейного эллиптического оператора является оператор
Примечания
править- ↑ Миранда К. Уравнения с частными производными эллиптического типа. — Москва: издательство иностранной литературы, 1957. — 256 с.
- ↑ Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.