Солитон

Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде.

Солитон
Изображение
Первооткрыватель или изобретатель Рассел, Джон Скотт
Дата открытия (изобретения) 1834
Логотип Викисклада Медиафайлы на Викискладе
График «тёмного солитона»

Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а продолжают движение, сохраняя свою структуру неизменной. Это свойство может использоваться для передачи данных на большие расстояния без помех. Кроме того, в отличие от гармонических волн, классические солитоны помимо переноса энергии осуществляют также перенос вещества (сдвиг в направлении своего движения на конечное расстояние)[1].

История изучения солитона началась в августе 1834 года на берегу канала Юнион вблизи Эдинбурга. Джон Скотт Рассел наблюдал на поверхности воды явление, которое он назвал уединённой волной — «solitary wave»[2][3][4].

Впервые понятие солитона было введено для описания нелинейных волн, взаимодействующих как частицы[5]. Свойство солитонов переносить вещество предложено использовать в качестве одного из механизмов возбуждения электрических токов в плазме[6] и разделения вещества и антивещества в ранней Вселенной[7].

Солитоны бывают различной природы:

  • на поверхности жидкости[8] (первые солитоны, обнаруженные в природе[9]), иногда считают таковыми волны цунами и бор[10]
  • ионозвуковые и магнитозвуковые солитоны в плазме[11]
  • гравитационные солитоны в слоистой жидкости[12]
  • солитоны в виде коротких световых импульсов в активной среде лазера[13]
  • можно рассматривать в качестве солитонов нервные импульсы[14]
  • солитоны в нелинейно-оптических материалах[15][16]
  • солитоны в воздушной среде[17]

Математическая модель

править
 
Распад синусоидальной волны на солитоны, наблюдавшийся Забуски и Крускалом при численном решении уравнения КдФ

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега — де Фриза:

 

Одним из возможных решений данного уравнения является уединённый солитон:

 

где   — амплитуда солитона,   — фаза. Эффективная ширина основания солитона равна  . Такой солитон движется со скоростью  . Видно, что солитоны с большой амплитудой оказываются более узкими и движутся быстрее[18].

В более общем случае можно показать, что существует класс многосолитонных решений, таких что асимптотически при   решение распадается на несколько удалённых одиночных солитонов, движущихся с попарно различными скоростями. Общее N-солитонное решение можно записать в виде

 

где матрица   даётся выражением

 

Здесь   и   — произвольные вещественные постоянные.

Замечательным свойством многосолитонных решений является безотражательность: при исследовании соответствующего одномерного уравнения Шрёдингера

 

с потенциалом  , убывающим на бесконечности быстрее чем  , коэффициент отражения равен 0 тогда и только тогда, когда потенциал есть некоторое многосолитонное решение уравнения КдФ в некоторый момент времени  .

Интерпретация солитонов как некоторых упруго взаимодействующих квазичастиц основана на следующем свойстве решений уравнения КдФ. Пусть при   решение имеет асимптотический вид   солитонов, тогда при   оно также имеет вид   солитонов с теми же самыми скоростями, но другими фазами, причём многочастичные эффекты взаимодействия полностью отсутствуют. Это означает, что полный сдвиг фазы  -го солитона равен

 

Пусть  -й солитон движется быстрее, чем  -й, тогда

 
 

то есть фаза более быстрого солитона при парном столкновении увеличивается на величину  , а фаза более медленного — уменьшается на  , причём полный сдвиг фазы солитона после взаимодействия равен сумме сдвигов фаз от попарного взаимодействия с каждым другим солитоном.

Для нелинейного уравнения Шрёдингера:

 

при значении параметра   допустимы уединённые волны в виде:

 

где   — некоторые постоянные, связанные соотношениями:

 
 


Дромион — решение уравнения Дэви-Стюартсона[19].

См. также

править

Примечания

править
  1. F. M. Trukhachev, N. V. Gerasimenko, M. M. Vasiliev, O. F. Petrov. Matter transport as fundamental property of acoustic solitons in plasma // Physics of Plasmas. — 2023-11-01. — Т. 30, вып. 11. — ISSN 1070-664X. — doi:10.1063/5.0172462.
  2. J.S.Russell «Report on Waves»: (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311—390, Plates XLVII-LVII)
  3. J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
  4. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987, с.12.
  5. N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240—243.Оригинал статьи (недоступная ссылка)
  6. Ф. М. Трухачев, М. М. Васильев, О. Ф. Петров. Солитонные токи (обзор) // Теплофизика высоких температур. — 2020. — Т. 58, вып. 4. — С. 563–583. — ISSN 0040-3644. — doi:10.31857/S0040364420040158.
  7. Alexander E. Dubinov, Xenia I. Lebedeva. Ambiplasma separation into matter and antimatter by a train of baryon-acoustic solitons in the problem of the baryon asymmetry of the Universe // Chaos, Solitons & Fractals. — 2021-11-01. — Т. 152. — С. 111391. — ISSN 0960-0779. — doi:10.1016/j.chaos.2021.111391.
  8. Дж. Л. Лэм. Введение в теорию солитонов. — М.: Мир, 1983. — 294 с.
  9. А. Т. Филиппов. Многоликий солитон. — С. 40—42.
  10. А. Т. Филиппов. Многоликий солитон. — С. 227—23.
  11. Солитон — статья из Физической энциклопедии
  12. Vladimir Belinski, Enric Verdaguer. Gravitational solitons. — Cambridge University Press, 2001. — 258 с. — (Cambridge monographs on mathematical physics). — ISBN 0521805864.
  13. Н. Н. Розанов. Мир лазерных солитонов // Природа. — 2007. — № 6. Архивировано 24 апреля 2013 года.
  14. А. Т. Филиппов. Многоликий солитон. — С. 241—246.
  15. А. И. Маймистов. Солитоны в нелинейной оптике // Квантовая электроника. — 2010. — Т. 40, № 9. — С. 756—781.
  16. Andrei I Maimistov. Solitons in nonlinear optics (англ.) // Quantum Electronics. — 2010. — Vol. 40. — P. 756. — doi:10.1070/QE2010v040n09ABEH014396. Архивировано 9 марта 2011 года.
  17. В стране и мире - Телеканал «Звезда». Дата обращения: 5 апреля 2015. Архивировано из оригинала 4 марта 2016 года.
  18. Сазонов С. В. Оптические солитоны в средах из двухуровневых атомов // Научно-технический вестник информационных технологий, механики и оптики. 2013. Т. 5. № 87. С. 1—22.
  19. Источник. Дата обращения: 17 мая 2018. Архивировано 31 декабря 2019 года.

Литература

править
  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. — М.: Мир, 1987. — 480 с.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. — М.: Мир, 1988. — 696 с.
  • Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. — М.: Наука, 1980. — 320 с.
  • Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. — М.: Физматлит, 2006. — 480 с.
  • Лэм Дж. Л. Введение в теорию солитонов. — М.: Мир, 1983. — 294 с.
  • Ньюэлл А. Солитоны в математике и физике. — М.: Мир, 1989. — 328 с.
  • Ахмедиев Н. Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. — М.: Физматлит, 2003. — 304 с. — ISBN 5-9221-0344-X.
  • Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. — М.: URSS, 2004. — 424 с.
  • Уизем Дж. Линейные и нелинейные волны. — М.: Мир, 1977. — 624 с.
  • Филиппов А. Т. Многоликий солитон. — Изд. 2-е, перераб. и доп.. — М.: Наука, 1990. — 288 с.
  • Барьяхтар В. Г., Захаров В. Е., Черноусенко В. М. Интегрируемость и кинетические уравнения для солитонов. — Киев: Наукова думка, 1990. — 472 с. — 1000 экз. — ISBN 5-12-001120-9.
  • Yaroslav V. Kartashov, Boris A. Malomed, Lluis Torner. Solitons in nonlinear lattices (англ.) // Reviews of Modern Physics. — 2011. — Vol. 83. — P. 247–306.
  • Focus: Landmarks—Computer Simulations Led to Discovery of Solitons (англ.) // Physics. — 2013. — Vol. 6. — P. 15. — doi:10.1103/Physics.6.15.

Ссылки

править