Гармони́ческий ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:
.
Ряд назван гармоническим, так как складывается из «гармоник»: -я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной от длины исходной струны[1]. Кроме того, каждый член ряда, начиная со второго, представляет собой среднее гармоническое двух соседних членов.
Отдельные члены ряда стремятся к нулю, но его сумма бесконечна (ряд расходится).
Частичная суммаn первых членов гармонического ряда называется n-м гармоническим числом:
Гармонический ряд расходится: при однако очень медленно (для того, чтобы частичная сумма превысила 100, необходимо около 1.5*1043 элементов ряда).
Расходимость гармонического ряда можно продемонстрировать, сравнив его со следующим телескопическим рядом, который получается из логарифмирования :
Частичная сумма этого ряда, очевидно, равна Последовательность таких частичных сумм расходится; следовательно, по определению телескопический ряд расходится, но тогда из признака сравнения рядов следует, что гармонический ряд тоже расходится.
Доказательство через предел последовательности частичных сумм[3]
Рассмотрим последовательность Покажем, что эта последовательность не является фундаментальной, то есть, что Оценим разность Пусть Тогда Следовательно, данная последовательность не является фундаментальной и по критерию Коши расходится. Тогда по определению ряд также расходится.
Доказательство расходимости можно построить, если сравнить гармонический ряд с другим расходящимся рядом, в котором знаменатели дополнены до степени двойки. Этот ряд группируется, и получается третий ряд, который расходится:
(Группировка сходящихся рядов всегда дает сходящийся ряд, а значит если после группировки получился ряд расходящийся, то и исходный тоже расходится.)
Это доказательство принадлежит средневековому учёному Николаю Орему (ок. 1350).
Сумма обобщённого гармонического ряда порядка равна значению дзета-функции Римана:
Для целых чётных показателей это значение явно выражается через число пи — например, сумма ряда обратных квадратов. Но уже для α=3 его значение (константа Апери) аналитически неизвестно.
Другой иллюстрацией расходимости гармонического ряда может служить соотношение
В 2003 году изучены[5][6] свойства случайного ряда
где — независимые, одинаково распределённые случайные величины, которые принимают значения +1 и −1 с одинаковой вероятностью ½. Показано, что этот ряд сходится с вероятностью 1, и сумма ряда есть случайная величина с интересными свойствами. Например, функция плотности вероятности, вычисленная в точках +2 или −2, имеет значение:
Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшийся ряд сходится, и его сумма меньше 80[7]. Позже была найдена более точная оценка, ряд Кемпнера сходится к (последовательность A082838 в OEIS). Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Из этого можно сделать ошибочное заключение о сходимости исходного гармонического ряда, что не верно, поскольку с ростом разрядов в числе всё меньше слагаемых берётся для суммы «истончённого» ряда. То есть, в конечном счёте отбрасывается подавляющее большинство членов, образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию.
↑Грэхэм Р., Кнут Д., Паташник О. Конкретная математика. Основание информатики. — М.: Мир; БИНОМ. Лаборатория знаний, 2006. — С. 47. — 703 с. ISBN 5-03-003773-X
↑Кудрявцев Н. Л. Лекции по математическому анализу. — 2013. — С. 35.
↑ 12Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. М.: Наука. Главная редакция физико-математической литературы, 1981, 718 с.
↑«Random Harmonic Series», American Mathematical Monthly 110, 407—416, May 2003