Апейрогон
Апейрогон или бесконечноугольник (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон[1].
Правильный апейрогон
правитьПравильный апейрогон имеет стороны равной длины, как и любой другой правильный многоугольник. Его символ Шлефли — {∞}, диаграмма Коксетера — Дынкина — .
Правильный апейрогон разбивает плоскость на две полуплоскости, образуя апейрогональный диэдр[англ.] {∞,2}. Внутренняя часть апейрогона может быть определена путём указания направления сторон.
Правильные | Однородные | ||
---|---|---|---|
∞.∞ | 2∞ | 4.4.∞ | 3.3.3.∞ |
{∞, 2} |
{2, ∞} |
t{2, ∞} |
sr{2, ∞} |
Правильными апейрогонами можно считать прямые, состоящие из рёбер четырёх однородных мозаик и пяти мозаик, двойственных однородным, на евклидовой плоскости.
3 направления | 1 направление | 2 направления | |
---|---|---|---|
Шеститреугольная мозаика |
Треугольный паркет |
Удлинённая треугольная мозаика |
Квадратный паркет (кадриль) |
3 направления | 6 направлений | 1 направление | 4 направления | |
---|---|---|---|---|
Тетрамозаика |
Разделённая треугольная мозаика |
Разделённая шестиугольная мозаика |
Призматическая пятиугольная мозаика |
Разделённая квадратная мозаика |
Неправильные апейрогоны
правитьИзогональный апейрогон имеет вершины одного типа и чередующиеся стороны двух типов (длин).
Квазиправильный апейрогон — изогональный апейрогон с равными длинами сторон.
Изотоксальный апейрогон является двойственным по отношению к изогональному. Он имеет один тип рёбер и два типа вершин и геометрически идентичен правильному апейрогону, что можно показать чередующейся раскраской вершин в два цвета.
Правильный | … … |
---|---|
Квазиправильный | … … |
Изогональный[англ.] | … … |
Изотоксальный[англ.] | … … |
Апейрогоны на плоскости Лобачевского
правитьПравильные апейрогоны на плоскости Лобачевского имеют кривизну, также как и многоугольники с конечным числом сторон. Вокруг апейрогона на плоскости Лобачевского можно описать орицикл или эквидистанту (гиперцикл), аналогично тому, как вокруг многоугольника с конечным числом сторон может быть описана окружность.
3 | 4 | 5 |
---|---|---|
{∞,3} |
{∞,4} |
{∞,5} |
6 | 7 | 8 | … | ∞ |
---|---|---|---|---|
{∞,6} |
{∞,7} |
{∞,8} |
{∞,∞} |
{∞, 3} | tr{∞, 3} | tr{12i, 3} |
---|---|---|
Правильный: {∞} |
Квазиправильный: t{∞} |
Квазиправильный: t{12i} |
Примечания
править- ↑ Coxeter, Regular polytopes, p.45
Литература
править- H. S. M. Coxeter. Regular Polytopes. — 3rd. — New York: Dover Publications, 1973. — С. 121–122. — ISBN 0-486-61480-8.
- Grünbaum, B. Regular polyhedra — old and new, Aequationes Math. 16 (1977) p. 1-20
- Coxeter, H. S. M. and Moser, W. O. J. Generators and Relations for Discrete Groups. — New York: Springer-Verlag, 1980. — ISBN 0-387-09212-9. (1st ed, 1957) 5.2 The Petrie polygon {p, q}.
Ссылки
править- 'Russell, Robert A.. Apeirogon (англ.) на сайте Wolfram MathWorld.
- Olshevsky, George. Apeirogon . Glossary for Hyperspace. Архивировано 4 февраля 2007 года.
Для улучшения этой статьи желательно:
|