Уравне́ние ви́хря (уравнение эволюции вихря) — дифференциальное уравнение в частных производных, описывающее эволюцию в пространстве и времени вихря скорости течения жидкости или газа. Под вихрем скорости (завихренностью) понимается ротор скорости . Уравнение вихря используется в гидродинамике, геофизической гидродинамике, астрофизической гидродинамике, в численном прогнозе погоды.

Уравнение вихря идеальной жидкости

править

Жидкость (или газ), в которой пренебрежимо малы эффекты, связанные с внутренним трением (вязкостью) и теплообменом, называется «идеальной». Динамика идеальной жидкости подчиняется уравнению Эйлера[1] (1755 год). Если записать это уравнение при отсутствии внешних сил в форме Громеки-Лэмба

где   — вектор скорости,   — давление,   — плотность, принять условие несжимаемости  , и применить к обеим сторонам этого уравнения операцию  , учитывая известные свойства этого оператора, то мы получим уравнение вихря идеальной несжимаемой жидкости

    (2)

Интегральной форме этого уравнения соответствует теорема Гельмгольца—Кельвина о сохранении циркуляции скорости в баротропной жидкости[2][3]. Уравнение (2) называется уравнение Гельмгольца.

При безвихревом движение жидкости (называемым также «потенциальным»)  . Из уравнения (2) следует, что если в начальный момент времени движение безвихревое, то оно таковым и останется в дальнейшем. Это приводит к теоремам Томсона.

Уравнение вихря вязкой несжимаемой жидкости

править

Если в уравнении (1) учитывать также и силу внутреннего трения (вязкость), то вместо уравнения (2) мы будем иметь

    (3)

где   — кинематическая вязкость[4].

Уравнение вихря бароклинной невязкой жидкости

править

Условие отсутствия теплообмена (то есть адиабатичности) течения несжимаемой невязкой жидкости эквивалентно условию постоянства энтропии (то есть изоэнтропичности)[1]. Если отказаться от этого ограничения, то уравнение (2) заменится на более общее

    (4)

учитывающее эффект бароклинности. Правая часть этого уравнения равна нулю, если  , то есть, если изопикническая поверхность параллельна изобарической. В противном случае векторное произведение градиента плотности и градиента давления отлично от нуля, что приводит к изменению завихренности из-за влияния бароклинности. Влияние бароклинности на эволюцию вихря установил Вильгельм Бьеркнес[5][6]. Это уравнение вскрыло важную роль эффектов бароклинности при образовании и развитии вихрей в атмосфере и океане.

Уравнение Фридмана

править
(Уравнение Фридмана существует также в космологии. См. Уравнение Фридмана).

В общем случае движение ньютоновской жидкости подчиняется уравнениям Навье-Стокса. В отличие от рассмотренной выше формы уравнения Эйлера для несжимаемой жидкости, в нём учтены эффекты сжимаемости и внутреннего трения. Применяя к уравнению Навье-Стокса дифференциальный оператор  , мы получим уравнение А. А. Фридмана[7][8].

    (5)

где   — дифференциальный оператор гельмгольциан,   — плотность силы молекулярной вязкости.

Гидродинамический смысл гельмгольциана заключается в том, что равенство   означает «вмороженность» векторного поля   в движущуюся жидкость, понимаемую в том смысле, что каждая векторная линия этого поля (то есть линия, касательная к которой в любой её точке имеет направление вектора   в этой точке) сохраняется, то есть всё время состоит из одних и тех же жидких частиц, а интенсивность вихревых трубок (стенки которых состоят из вихревых линий), то есть потоки   вектора   через любые сечения   этих трубок, не меняются со временем[9].

Влияние силы тяжести не меняет вид уравнений (2) — (5) потому, что эта сила потенциальна.

Уравнение Фридмана — основное уравнение геофизической гидродинамики. На нём построена теория численного прогноза погоды.

Уравнение вихря турбулентной жидкости

править

Уравнение Фридмана применяется и к турбулентным течениям. Но в таком случае, все входящие в него величины должны пониматься как осреднённые (в смысле О. Рейнольдса). Однако, следует иметь в виду, что такое обобщение здесь недостаточно точно. Дело в том, что при выводе уравнения (5) не принимался во внимание (из-за относительной малости) вектор плотности турбулентного импульса  , где черта сверху — знак осреднения, штрих — отклонения от среднего. Это обстоятельство проявилось в том, что уравнение Фридмана оказалось неспособным в объяснении явления цикла индекса (васцилляции), в котором наблюдается обратимый баротропный обмен энергией и угловым моментом между упорядоченным и турбулентным движениями.

Обозначим через   — «вектор скорости турбулентного переноса». Конечно,  , тем не менее, пренебрежение турбулентным переносом в задачах геофизической и астрофизической гидродинамики приводит к потере эффектов, проявляющих себя в медленных, но развивающихся процессах. Уравнение эволюции вихря, свободное от такого ограничения предложил А. М. Кригель[10][11]:

    (6)

где   — «псевдовектор полного вихря скорости»,   — плотность полной силы трения (молекулярного и турбулентного). Если опустить в этом уравнении эффекты бароклинности и вязкости, то правая часть остается, вообще говоря, отличной от нуля. В таком случае, как легко показать, теорема о сохранении циркуляции скорости ГельмгольцаКельвина не выполняется, несмотря на то, что течение баротропно. Этот вывод является следствием непотенциальности «плотности турбулентной силы Кориолиса»  . В уравнении (6) появился дополнительный механизм, влияющий на эволюцию вихря, открывающий путь к пониманию природы цикла индекса. Другим следствием такого дополнения уравнения Фридмана оказалось решение проблемы происхождения вращения в космологии.

Литература

править
  1. 1 2 Ландау Л. Д., Лифшиц Е. М. Гидродинамика (Теоретическая физика. Т.VI).—М.: Наука.—1988.—736 с.— ISBN 5-02-013850-9.
  2. Helmholtz H. Uber integralle der hydrodynamischen Gleichungen, welche den Wirbewegungen entsprechen // Crelle J.—1858.—55.
  3. Thomson W. On vortex motion // Trans. Roy. Soc. Edinburgh.—1869.—25.—Pt.1.—pp.217—260.
  4. Бэтчелор Дж. Введение в динамику жидкости. М.:Мир.—1973.—760 с.
  5. Bjerknes V. On the dynamics of the circular vortex: with applications to the atmosphere and atmospheric vortex and wave motion // Geofysiske publikationer.—1921.—2.—No 4.—88p.
  6. Bjerknes V., Bjerknes J., Solberg H., Bergeron T. Physicalische hydrodynamik.—Berlin.—1933.
  7. Фридман А. А. Теория движения сжимаемой жидкости и её приложение к движению атмосферы // Геофизический сборник.—1927.—5.—С.16—56 (Фридман А. А. Избранные труды. М.: Наука.—1966.—С.178—226).
  8. Фридман А. А. Опыт гидромеханики сжимаемой жидкости Архивная копия от 3 марта 2016 на Wayback Machine. Л.—М.: ОНТИ.—1934.—370 с.
  9. Монин А. С. Теоретические основы геофизической гидродинамики.— Л.: Гидрометеоиздат.—1988.— С.17.
  10. Кригель А. М. О несохранении циркуляции скорости в турбулентной вращающейся жидкости // Письма в Журнал Технической Физики .—1981.—7.—вып.21.—С.1300—1303.
  11. Krigel A. M. Vortex evolution // Geophys. Astrophys. Fluid Dynamics.—1983.—24.—pp.213—223.