Уравнение Гейзенберга

Уравнение Гейзенберга — уравнение, описывающее эволюцию квантовой наблюдаемой гамильтоновой системы, полученное Вернером Гейзенбергом в 1925 году. Это уравнение имеет вид:

где  — квантовая наблюдаемая, которая может явным образом зависеть от времени,  — оператор Гамильтона, а скобки обозначают коммутатор. В случае открытых, диссипативных и негамильтоновых квантовых систем используется уравнение Линдблада для квантовой наблюдаемой. Если в качестве наблюдаемых взять операторы координат и импульсов, то получим квантовые аналоги классических уравнений Гамильтона.

Из этого уравнения следует, в частности, уравнение Эренфеста, если в качестве квантовой наблюдаемой выбрать средние значения наблюдаемых. В классической механике аналогом приведённого уравнения Гейзенберга являются уравнения Гамильтона.

См. также

править

Литература

править
  • Лунев Ф. А., Свешников К. А., Свешников Н. А., Тимофеевская О. Д., Хрусталев О. А. Введение в квантовую теорию. Квантовая механика. — М.: Изд-во МГУ, 1985. — С. 63.
  • Медведев Б.В. Начала теоретической физики. Механика. Теория поля. Элементы квантовой механики. — М.: Наука, 1977. — С. 464.
  • Мессиа А. Квантовая механика. В 2 томах / Под ред. Л. Д. Фаддеева. Перевод с франц. В. Т. Хозяинова.. — М.: Наука, 1978. — Т. 1. — С. 307.
  • Тимофеевская О. Д., Хрусталев О. А. Лекции по квантовой механике. — Москва — Ижевск: РХД, 2007. — С. 12—13.
  • Ферми Э. Квантовая механика (конспект лекции). — М.: Мир, 1965. — С. 171—173.