Ультрафинитизм (известный также как ультраинтуитивизм[1], строгий формализм[2], строгий финитизм[2], актуализм[1], предикативизм[2][3] и сильный финитизм)[2] — крайняя форма финитизма, проявляемая в ряде математических и философско-математических концепций и теорий. Общим для всех форм математического финитизма является отказ от использования интуитивно сомнительной абстракции актуальной бесконечности, например, бесконечного множества натуральных чисел как законченного, завершённого в построении объекта; ультрафинитизм же отрицает или считает малосодержательной абстракцией и потенциальную бесконечность, то есть возможность построения сколь угодно больших конструктивных объектов; как следствие отрицается, например, применимость арифметических операций ко всем натуральным числам.
Предыстория
правитьУльтрафинитизм продолжает традиции философского финитизма, который был весьма распространён в античном мире и в Средние века, в частности, вследствие авторитета Аристотеля, отрицавшего актуальную бесконечность. В Новое время в математике оформление этих взглядов связано с появлением наивной теории множеств Георга Кантора, которая свободно оперировала актуальными бесконечностями, что привело к обнаружению ряда парадоксов. Попытки устранения парадоксов и доказательства непротиворечивости математики привели, в свою очередь, к появлению и оформлению ряда новых математических направлений — финитизма Гильберта, формализма, логицизма, интуиционизма и конструктивизма. После появления аксиоматической теории множеств, устранившей основные парадоксы теории множеств, теоретико-множественный подход стал доминирующим в преподавании математики[4], однако конструктивизм как самостоятельное направление математики сохранился и получил содержательное развитие. Взгляды математиков-ультрафинитистов можно считать продолжением и крайней формой конструктивизма.
Аргументация
правитьУльтрафинитизм отрицает приемлемость конечных математических объектов, алгоритм построения которых существует, но которые настолько велики, что этот алгоритм не может быть реализован в силу физических ограничений. Соответственно отрицается и осмысленность операций с такими объектами. Если финитизм Гильберта и конструктивизм отказывается от абстракции актуальной бесконечности, то ультрафинитизм отказывается от рассмотрения объектов, которые являются «практически» бесконечными. В частности, отрицается существование целой части первого числа Скьюза:
на том основании, что никто не смог вычислить это натуральное число, и маловероятно, что это в принципе возможно. Для записи числа Скьюза требуется примерно десятичных цифр, что существенно больше числа элементарных частиц в наблюдаемой части Вселенной, поскольку их не более [5].
Однако эта аргументация апеллирует к здравому смыслу и является скорее физической и философской, а не математической. Книгу академика-физика Зельдовича «Высшая математика для начинающих и её приложения к физике» жёстко критиковал с позиций классической математики академик-математик Понтрягин. Например, определение Зельдовичем производной как отношения «достаточно малых приращений» не только отрицает необходимость перехода к пределу, но вообще не является математическим определением. Академик-математик и отчасти физик Арнольд предложил такой аргумент для защиты[6]:
Книга начиналась с эпатирующего определения производной как отношения приращений «в предположении, что они достаточно малы»[7]. Это кощунственное с точки зрения ортодоксальной математики определение «физически», конечно, совершенно оправдано, ибо приращения физической величины меньше, чем, скажем, 10−100, являются чистейшей фикцией — структура пространства и времени в таких масштабах может оказаться весьма далёкой от математического континуума.
Аргумент Арнольда имеет форму предположения, но его можно дополнить тем бесспорным фактом, что, например, дифференциальное уравнение теплопроводности при таких масштабах бессмысленно, поскольку температура есть результат усреднения энергий молекул. Классическое определение производной в данном случае несостоятельно в силу отсутствия предела. Но уравнение позволяет проводить высокоточные расчёты, поскольку работает определение Зельдовича.
Значительного продвижения в построении полностью «конечной» математики добился создатель альтернативной теории множеств[англ.] Петр Вопенка[чеш.][8][9]. Однако ультрафинитизм, в отличие от конструктивизма, не стал полноценным направлением математики и остаётся в основном философией части математиков. Логик-конструктивист Анне Шерп Трулстра в фундаментальном обзоре «Конструктивизм в математике (1988)»[10] отметил «отсутствие удовлетворительного развития» в том смысле, что соответствующих работ по математической логике нет.
Исследователи, ассоциируемые с ультрафинитизмом
правитьЕсенин-Вольпин в 1962 году опубликовал программу построения основ ультрафинитистской математики[11]. К числу математиков, которые публиковали работы по тематике ультрафинитизма или публично высказывали близкие взгляды также относятся Дорон Цейльбергер, Эдуард Нельсон[англ.], Рохит Дживанлал Парих,[англ.] и Жан-Поль ван Бендегем[англ.], Петр Вопенка, Робин Ганди[англ.].
Некоторые математики не считают важным и нужным высказываться публично о непринципиальных для них вопросах философии математики, но могут иметь весьма радикальные взгляды. Например, советский академик Успенский Я. В. в частном письме 1926 года характеризовал теорию множеств как «канторовско-лебеговскую дребедень»[12].
Примечания
править- ↑ 1 2 International Workshop on Logic and Computational Complexity, Logic and Computational Complexity, Springer, 1995, p. 31.
- ↑ 1 2 3 4 St. Iwan (2000), «On the Untenability of Nelson’s Predicativism (недоступная ссылка)», Эркеннтнис[англ.] 53(1-2), pp. 147—154.
- ↑ Не путать с предикативизмом Рассела.
- ↑ Академик В. В. Арнольд характеризует формальное теоретико-множественное преподавание как «выхолощенное и омертвевшее» 1 Архивная копия от 3 ноября 2019 на Wayback Machine
- ↑ Многоликая Вселенная Андрей Дмитриевич Линде, Стэнфордский университет (США), профессор . Дата обращения: 12 мая 2015. Архивировано 10 мая 2015 года.
- ↑ В. И. Арнольд. ЯБ и математика . Дата обращения: 8 июля 2019. Архивировано 3 ноября 2019 года.
- ↑ Чтобы это определение стало ультрафинитистки-математическим надо всё же уточнить размер приращений.
- ↑ Vopěnka, P. Mathematics in the Alternative Set Theory. Teubner, Leipzig, 1979.
- ↑ Holmes, Randall M. Alternative Axiomatic Set Theories Архивная копия от 7 августа 2019 на Wayback Machine в Стэнфордской философской энциклопедии.
- ↑ A.S. Troelstra, D. van Dalen. Constructivism in Mathematics
- ↑ Ésénine-Volpine, A. S. (1961), "Le programme ultra-intuitionniste des fondements des mathématiques", Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Oxford: Pergamon, pp. 201—223, MR 0147389 Reviewed by Kreisel, G.; Ehrenfeucht, A. (1967), "Review of Le Programme Ultra-Intuitionniste des Fondements des Mathematiques by A. S. Ésénine-Volpine", The Journal of Symbolic Logic, 32 (4), Association for Symbolic Logic: 517, doi:10.2307/2270182, JSTOR 2270182
- ↑ Ермолаева Н. С. Новые материалы к биографии Н. Н. Лузина. // Историко-математические исследования. — М.: Наука, 1989. — № 31. — С. 193.
Ссылки
править- Andras Kornai. Explicit finitism (недоступная ссылка)
- Vladimir Sazonov. On feasible numbers (недоступная ссылка)
- Doron Zeilberger. «Real» Analysis Is A Degenerate Case Of Discrete Analysis
- Discussion on formal foundations на MathOverflow
- A. S. Troelstra. History of constructivism in the 20th century
- Edward Nelson. Predicative Arithmetic
- Stephen A. Cook, Phuong The Nguyen. Logical Foundations of Proof Complexity
- Phuong The Nguyen. Bounded Reverse Mathematics
- Charles Petzold. Reading Brian Rotman’s «Ad Infinitum…» by
- Computational Complexity Theory // Stanford Encyclopaedia of Philosophy