Узел Нейвирта, или расслоенный узел, — узел, группа которого обладает конечно порождённым коммутантом. Понятие введено Ли Нейвиртом.[1]

Восьмёрка — пример узла Нейвирта.
Согласно теореме Нейвирта, стивидорный узел — не является узлом Нейвирта

Свойства

править
  • Дополнение узла Нейвирта есть пространство расслоения над окружностью, причем слой   является связной поверхностью, род которой равен роду узла.
  • Коммутант   группы узла Нейвирта является свободной группой ранга  , где   — род узла.
  • Теорема Нейвирта. Коэффициент при старшем члене многочлена Александера узла Нейвирта равен 1, а степень этого многочлена равна  .
  • Все торические узлы являются узлами Нейвирта
  • Всякий альтернированный узел, старший коэффициент полинома Александера которого равен ±1, также узел Нейвирта.

Примечания

править
  1. Neuwirth, L. The algebraic determination of the topological type of the complement of a knot. Proc. Amer. Math. Soc. 12 1961 904–906.