Поток Риччи

Поток Риччи — система дифференциальных уравнений в частных производных, описывающая деформацию римановой метрики на многообразии.

Эта система является нелинейным аналогом уравнения теплопроводности.

Назван по аналогии с кривизной Риччи, в честь итальянского математика Риччи-Курбастро.

Уравнение

править

Уравнение потока Риччи имеет вид:

 

где   обозначает однопараметрическое семейство римановых метрик на полном многообразии (зависящая от вещественного параметра  ), и   — её тензор Риччи.

Свойства

править
  • Формально говоря, система уравнений  , задаваемая потоком Риччи, не является параболическим уравнением. Тем не менее, существует параболическая система уравнений  , предложенная Детурком, такая, что если   риманова метрика на компактном многообразии   и  ,   — решения систем   и  , то   изометрично   для всех  .
    • Эта конструкция существенно упростила доказательство существования решения, она называется «трюком Детурка».
  • Аналогично уравнению теплопроводности (и прочим параболическим уравнениям), задав произвольные начальные условия при  , можно получить решения лишь в одну сторону по  , а именно  .
  • В отличие от решений уравнения теплопроводности, поток Риччи, как правило, не продолжается неограниченно при  . Решение продолжается на максимальный интервал  . В случае если   конечно, при приближении к   кривизна многообразия идёт к бесконечности, и в решении формируется сингулярность. Именно на исследовании сингулярностей, в которые упираются потоки Риччи, и было основано доказательство гипотезы Тёрстона.
  • Псевдолокальность — если некоторая окрестность точки в начальный момент выглядит почти как кусок евклидова пространства, то это свойство сохранится определённое время в потоке Риччи у меньшей окрестности.

Изменение геометрических характеристик

править
  • Для объёма   метрики   верно соотношение
     
  • Для скалярной кривизны   метрики   верно соотношение
     
где   определяется как   для ортонормированного репера   в точке.
  • В частности, согласно принципу максимума, поток Риччи сохраняет положительность скалярной кривизны.
  • Более того, нижняя грань скалярной кривизны не убывает.
  • Для каждого  -ортонормированного репера   в точке   существует так называемый сопутствующий  -ортонормированный репер  . Для тензора кривизны  , записанного в этом базисе, верно соотношение
     
где   — определённая билинейная квадратичная форма на пространстве тензоров кривизны и со значениями в них.
  • Билинейная квадратичная форма   определяет векторное поле на векторном пространстве тензоров кривизны — каждому тензору кривизны   приписывается другой тензор кривизны  . Решения ОДУ
 
играют важную роль в теории потоков Риччи.
  • Выпуклые множества   в пространстве тензоров кривизны, инвариантные относительно вращений и такие, что если в приведённом ОДУ  , то   при  , называются инвариантными для потока Риччи. Если кривизна римановой метрики на замкнутом многообразии в каждой точке принадлежит такому  , то тоже верно и для метрик, получаемых из неё потоком Риччи. Рассуждения такого сорта называются «принципом максимума» для потока Риччи.
  • К инвариантным множествам относятся

Размерность 3

править

В случае, когда размерность пространства равна 3, для каждого   и   можно подобрать репер  , в котором   диагонализуется в базисе  ,  ,  , скажем,

 

Тогда

 

История

править

Начало исследованию потока Риччи было положено Гамильтоном в начале 1980-x годов. С помощью потоков Риччи были доказаны несколько гладких теорем о сфере.

Используя потоки Риччи в своих статьях[1], опубликованных в 2002-2003 годах, Перельману удалось доказать гипотезу Тёрстона, проведя тем самым полную классификацию компактных трёхмерных многообразий, и доказать гипотезу Пуанкаре.[2]

Примечания

править
  1. См. статьи Григория Перельмана в списке литературы.
  2. http://arxiv.org/pdf/math/0607607.pdf Архивная копия от 21 января 2021 на Wayback Machine «This conjecture was formulated by Henri Poincaré [58] in 1904 and has remained open until the recent work of Perelman. … Perelman’s arguments rest on a foundation built by Richard Hamilton with his study of the Ricci flow equation for Riemannian metrics.».

Литература

править
  • Hamilton, R. S. Three Manifolds with Positive Ricci Curvature // J. Diff. Geom. 17, 255—306, 1982.
  • Hamilton, R. S. Four Manifolds with Positive Curvature Operator // J. Diff. Geom. 24, 153—179, 1986.
  • Perelman, Grisha (November 11, 2002). "The entropy formula for the Ricci flow and its geometric applications". arXiv:math.DG/0211159. {{cite arXiv}}: |class= игнорируется (справка)
  • Perelman, Grisha (March 10, 2003). "Ricci flow with surgery on three-manifolds". arXiv:math.DG/0303109. {{cite arXiv}}: |class= игнорируется (справка)
  • Perelman, Grisha (July 17, 2003). "Finite extinction time for the solutions to the Ricci flow on certain three-manifolds". arXiv:math.DG/0307245. {{cite arXiv}}: |class= игнорируется (справка)
  • Bruce Kleiner, John Lott: Notes and commentary on Perelman's Ricci flow papers (PDF; 1,5 MB), 2008.
  • J. Rubinstein, R. Sinclair: Visualizating Ricci Flow on Manifolds of Revolution (PDF; 2,7 MB), 2004.
  • Chow, Bennett, Peng Lu, and Lei Ni. Hamilton's Ricci flow. — American Mathematical Soc., 2006.