Модель распространения технологий

(перенаправлено с «Модель заимствования технологий»)

Модель распространения технологий (модель заимствования технологий, модель Барро — Сала-и-Мартина, англ. technology diffusion model) — трёхсекторная модель эндогенного экономического роста в условиях монополистической конкуренции, показывающая возможность существования устойчивого экономического роста, обусловленного поведенческими факторами, а также возможность конвергенции, обусловленной распространением (заимствованием) технологий. В модели обосновано устойчивое различие в процентных ставках между развитыми и развивающимися странами. Разработана в 1995 году Робертом Барро и Хавьером Сала-и-Мартином.

Хавьер Сала-и-Мартин

История создания

править

В первых моделях экономического роста (модель Солоу, модель Харрода — Домара) использовались экзогенно задаваемые параметры «норма сбережений» и «темп научного прогресса», от которых в конечном итоге и зависят темпы роста экономики. Исследователи же хотели получить обоснование темпов экономического роста внутренними (эндогенными) факторами, поскольку модели с нормой сбережений имели ряд недостатков. Эти модели не объясняли устойчивые различия в уровнях и темпах роста между развивающимися и развитыми странами. Появившиеся позже модели Рамсея — Касса — Купманса и пересекающихся поколений преодолели недостаток экзогенности нормы сбережений — теперь эта величина определялась исходя из индивидуальных решений экономических агентов. Однако темп научного прогресса остался экзогенным в этих моделях, и во многом поэтому они тоже не смогли объяснить межстрановые различия. Модели, объясняющие экономический рост путём переопределения понятия «капитал», и включившие человеческий капитал в производственную функцию (например, модель Мэнкью — Ромера — Вейла) также не объясняют всех различий между темпами роста и уровнем развития разных стран, даже после учёта различий в человеческом капитале[1]. Это показали, например, исследования Р. Холла и Ч. Джонса[2], Дж. Де Лонга[3], П. Ромера[4]. Попытки прямого включения переменной научного прогресса в производственную функцию натолкнулись на ограничение, связанное с отдачей от масштаба. В условиях совершенной конкуренции при постоянной отдаче от масштаба доход фирмы полностью уходил на оплату труда и капитала. Поэтому будущий лауреат Нобелевской премии по экономике Пол Ромер предложил использовать в моделях монополистическую конкуренцию для объяснения темпов технологического прогресса[5], с использованием которой он разработал модель растущего разнообразия товаров Существенным недостатком это модели было отсутствие перетока технологий между странами[6]. На основании модели Ромера Роберт Барро и Хавьер Сала-и-Мартин, разработали модель распространения технологий[7][8], также известную как модель заимствования технологий[9], она была опубликована в работе «Распространение технологий, конвергенция и рост», изданной в июне 1995 года в NBER[10] и в марте 1997 года — в журнале Journal of Economic Growth[англ.][11][7].

Описание модели

править

Базовые предпосылки модели

править

В модели присутствуют два типа стран: страна-лидер (англ. Leader) и страна-последователь (англ. Follower). Страна-лидер разрабатывает новые технологии, а страна-последователь имитирует технологии, заимствованные у лидера. Однако при этом в модели рассматривается закрытая экономика: экспорт и импорт товаров отсутствуют. Мобильность капитала между странами также отсутствует. Фирмы максимизируют свою прибыль, а потребители — полезность. В экономике существует три сектора: промежуточных товаров[англ.], конечных товаров[англ.] и НИОКР. Сектор конечной продукции работает в условиях совершенной конкуренции. Сектор промежуточной продукции работает в условиях монополистической конкуренции. Сектор НИОКР продает свои патенты на изобретенные продукты сектору промежуточных товаров. Экономический рост в модели происходит за счёт увеличения числа промежуточных товаров. В качестве работника и потребителя в модели выступает бесконечно живущий индивид (или домохозяйство). Предполагается, что между разными поколениями существуют альтруистические связи, при принятии решений домохозяйство учитывает ресурсы и потребности не только настоящих, но и будущих своих членов, что делает его решения аналогичным решениям бесконечно живущего индивида. Время   изменяется непрерывно[12][10][13][14].

Трудовые ресурсы  , считающиеся в модели постоянными в стране-лидере, распределены между секторами производства конечной продукции и НИОКР[12][10]:

 ,
где   — совокупные трудовые ресурсы в стране-лидере,  ,   — трудовые ресурсы, занятые в производстве в стране-лидере, которые в модели считаются постоянными во времени,  ,   — трудовые ресурсы в научно-исследовательском секторе в стране-лидере,  .

В стране-последователе трудовые ресурсы распределены аналогично[10]:

 ,
где   — совокупные трудовые ресурсы в стране-последователе,  ,   — трудовые ресурсы, занятые в производстве в стране-последователе, которые в модели считаются постоянными во времени,  ,   — трудовые ресурсы в научно-исследовательском секторе в стране-последователе,  .

Производственная функция одинакова в двух странах, она обладает убывающей предельной производительностью, постоянной отдачей от масштаба и представляет собой функцию Диксита — Стиглица[12][10]:

 ,
где   — выпуск конечного продукта,   — уровень технологической производительности в экономике,  ,   — эластичность выпуска по промежуточному товару,  ,  ,   — количество используемого  -го промежуточного продукта,   — количество промежуточных продуктов в экономике в момент времени  .

  — количество промежуточных продуктов в стране-лидере,   — количество промежуточных продуктов в стране-последователе,  [10][7].

Физический капитал   в экономике равен сумме промежуточных продуктов, каждый из которых полностью используется в производственном цикле[15]:

 .

Цена единицы выпуска конечного продукта в модели:  . Это означает, что цены промежуточных продуктов даны как отношение к цене конечного продукта:  . Реальная заработная плата равна  .

Инвестиции   в модели в обеих странах равны сбережениям   и вычисляются исходя из тождества системы национальных счетов[10]:

 ,
где   — совокупное потребление,   — потребление на единицу труда в момент времени  ,   — производная капитала по времени.

Функция полезности потребителя обладает в обеих странах постоянной эластичностью замещения по времени, как и в модели Рамсея — Касса — Купманса[10]:

 ,
где   — эластичность замещения по времени,  ,  ,   — коэффициент межвременного предпочтения потребителя,  ,  . Функция удовлетворяет условиям   и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю):  .

Как и в модели Рамсея — Касса — Купманса, доходы индивида в обеих странах состоят из заработной платы   и поступлений от активов  . Активы индивида   могут быть как положительными, так и отрицательными (долг). Процентная ставка   по вложениям и по долгу в модели принята одинаковой. В связи с этим в модели присутствует условие отсутствия схемы Понци (финансовой пирамиды): нельзя бесконечно выплачивать старые долги за счет новых[10][16]:

 ,
где   — в закрытой экономике весь капитал принадлежит резидентам, а величина активов индивида   совпадает с запасом капитала на одного работающего.

Равновесие и темпы роста в стране-лидере

править

Параметры общего экономического равновесия и темпы экономического роста в рассматриваемой модели в стране-лидере полностью аналогичны модели растущего разнообразия товаров[17]. Функция спроса на  -й промежуточный продукт имеет вид[10][12]:

 .

В результате решения задачи фирмы прибыль производителя промежуточного продукта в стране-лидере ( ) равна[10][12][18]:

 .

В результате решения задачи потребителя, динамика потребления выглядит следующим образом[10][12][19][20]:

 ,
где   — производная потребления на душу населения по времени.

Производственная функция научного-исследовательского сектора в модели находится из следующего дифференциального уравнения[10][12][17]:

 
где   — производительность в научно-исследовательском секторе,  ,   — производная количества промежуточных продуктов в стране-лидере по времени, также предполагается положительный внешний эффект от количества промежуточных товаров  .

Научно-исследовательский сектор работает в условиях совершенной конкуренции, потому цена патента   равна предельным издержкам по разработке новой технологии  [10][12][17]:

 .

В устойчивом состоянии темпы роста потребления равны темпам роста выпуска и капитала, а в равновесном состоянии цена патента   постоянна ( ), потому[10][12][21][22][23]:

 ,
 ,
где   — производная выпуска в стране-лидере по времени.

Научно-исследовательский сектор в стране-последователе

править
 
Модель распространения технологий, функция издержек имитации продукта

Страна последователь может не только разрабатывать новые технологии, но и имитировать те, что уже разработаны в стране-лидере. Издержки имитации ( ) ниже, чем издержки разработки новой технологии ( ). Они описываются следующей функцией[24][25][10][26]:

 

Чем больше разница между странами в количестве технологий, тем дешевле их имитации для страны-последователя[24][10][26]:

 .

Если же  , то издержки имитации   становятся равными издержкам разработки  [10]. Пример функции, удовлетворяющей таким предпосылкам, приведён на иллюстрации[24].

В качестве примера функции издержек имитации часто используется функция с постоянной эластичностью[10][24]:

 ,
где   — эластичность издержек имитации по соотношению числа технологий.

Равновесие и темпы роста в стране-последователе

править

Задачи фирмы и потребителя в стране-последователе аналогичны задачам фирмы и потребителя в стране-лидере, в устойчивом состоянии темпы роста потребления равны темпам роста выпуска и капитала, потому[10][24][27]:

 
 ,
где   — производная издержек имитации по времени.

Таким образом, темпы экономического роста в стране-последователе равны[10][28]:

 ,
где   — производная выпуска в стране-последователе по времени.

Далее вводится предпосылка о том, что прибыли монополистов в обеих странах одинаковы:  . В этом случае получается, что процентная ставка и темпы роста выпуска в стране-последователе выше, чем в стране лидере[10][29]:

 

В том случае, если в качестве функции издержек имитации используется функция с постоянной эластичностью  , темпы роста в стране-последователе равны[10][24]:

 ,
где   — темп роста издержек имитации.

В итоге, мы получаем, что процентная ставка и темпы роста выпуска в стране-последователе выше, чем в стране-лидере. Поскольку  , темп роста издержек имитации со временем замедляется, а значит, со временем темпы роста и процентная ставка в стране-последователе снижаются до уровня страны-лидера[29].

Преимущества, недостатки и дальнейшее развитие модели

править

Модель сохранила все преимущества модели растущего разнообразия товаров, в частности, явную спецификацию издержек и выгод от инвестиций в новые технологии и определение темпов экономического роста как последствия решений индивидов[30]. Вместе с тем, модель растущего разнообразия товаров не предполагает ни абсолютной, ни условной конвергенции, так как темпы роста не падают с ростом объёма выпуска, а значит, в рамках её предпосылок бедные страны не могут догнать богатые[31]. В модели распространения технологий ситуация иная: она предполагает наличие условной конвергенции в том случае, если структурные параметры их производственных функций одинаковы и если существует у страны-последователя возможность имитации технологии страны-лидера. Формулировка условий конвергенции выглядит похожей на условия конвергенции в модели Солоу, модели Рамсея — Касса — Купманса и модели пересекающихся поколений, которые предсказывают более оптимистичные темпы роста в развивающихся странах, чем наблюдающиеся на реальных данных[32]. Однако условия конвергенции в модели распространения технологий существенно более жёсткие: требуется возможность имитации технологий, кроме того, в рамках этой модели схожесть структурных параметров означает не только схожие доли дохода труда и капитала в национальном доходе, но и также достаточно большой размер экономики страны, либо возможность экспорта товаров в достаточно большую развитую страну без значительных издержек. Эти условия выполняются, например, для экономики Китая в 1990-х и 2000-х годах, когда наблюдался существенный экономический рост[33].

От модели растущего разнообразия товаров модель распространения технологий также унаследовала и недостаток — зависимость темпов роста от объёма трудовых ресурсов  , предполагающую, что большие (с точки зрения населения) страны должны расти существенно быстрее малых, но это не нашло эмпирического подтверждения[31].

Реалистичен вывод модели относительно процентных ставок в стране-лидере и стране-последователе. Эмпирические данные свидетельствуют, что в развивающихся странах более высокая, но постепенно снижающаяся в долгосрочном периоде, процентная ставка, чем в развитых странах, в то время как в развитых странах процентная ставка стабильна[29].

Идею о том, что в модели растущего разнообразия товаров издержки заимствования могут быть ниже издержек имитации, была также высказана в работе Уильяма Истерли, Роберта Кинга[англ.], Росса Левина[англ.] и Серджио Ребело[англ.], однако авторы сосредоточились на эффектах кредитно-денежной и фискальной политики, а не на распространении технологий между странами[34].

Стивен Паренте[англ.] разработал версию модели, в которой обучение новой технологии происходит с некоторым лагом. Новая технология в ней сразу после внедрения используется не на 100 %, но с течением времени её КПД постепенно растёт, пока не достигнет 100 %. Потому переход к новой технологии сначала сопровождается падением общего уровня выпуска, но потом он растёт до более высокого, чем ранее, уровня[35]. Так, например, внедрение электричества в США в XIX веке поначалу сопровождалось падением производительности[36].

Примечания

править
  1. Шараев, 2006, с. 119.
  2. Hall, Jones, 1996.
  3. De Long, 1988.
  4. Romer P. M., 1989.
  5. Туманова, Шагас, 2004, с. 217.
  6. Аджемоглу, 2018, с. 699.
  7. 1 2 3 Шараев, 2006, с. 130.
  8. Барро, Сала-и-Мартин, 2010, с. 447.
  9. Туманова, Шагас, 2004, с. 223.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Barro, Sala-i-Martin, 1995.
  11. Barro, Sala-i-Martin, 1997.
  12. 1 2 3 4 5 6 7 8 9 Romer, 1990.
  13. Шараев, 2006, с. 120—121, 130—131.
  14. Барро, Сала-и-Мартин, 2010, с. 447—450.
  15. Шараев, 2006, с. 121.
  16. Аджемоглу, 2018, с. 676.
  17. 1 2 3 Шараев, 2006, с. 124.
  18. Шараев, 2006, с. 123.
  19. Шараев, 2006, с. 125.
  20. Аджемоглу, 2018, с. 675.
  21. Шараев, 2006, с. 126.
  22. Аджемоглу, 2018, с. 677.
  23. Барро, Сала-и-Мартин, 2010, с. 450—452.
  24. 1 2 3 4 5 6 Шараев, 2006, с. 131.
  25. Аджемоглу, 2018, с. 1040.
  26. 1 2 Барро, Сала-и-Мартин, 2010, с. 464—471.
  27. Барро, Сала-и-Мартин, 2010, с. 452—454.
  28. Барро, Сала-и-Мартин, 2010, с. 474—478.
  29. 1 2 3 Шараев, 2006, с. 132.
  30. Аджемоглу, 2018, с. 629.
  31. 1 2 Туманова, Шагас, 2004, с. 220.
  32. Туманова, Шагас, 2004, с. 247.
  33. Барро, Сала-и-Мартин, 2010, с. 474—478, 485—486.
  34. Easterly et al, 1994.
  35. Parente, 1994.
  36. Туманова, Шагас, 2004, с. 224.

Литература

править