Модель Рамсея — Касса — Купманса

Модель Рамсея — Касса — Купманса (модель Рамсея, неоклассическая модель экономического роста, англ. Ramsey—Cass—Koopmans model) — неоклассическая модель экзогенного экономического роста в условиях совершенной конкуренции. Внесла вклад в понимание того, каким образом решения индивидов формируют норму сбережений в экономике. Оптимальная динамика потребления из модели (правило Кейнса — Рамсея) оказалась удачной заменой экзогенной норме сбережений и затем применялась и в более поздних моделях экономического роста. Вместе с тем, модель не даёт удовлетворительного объяснения межстрановым различиям в уровне дохода на душу населения. Разработана одновременно и независимо друг от друга Тьяллингом Купмансом и Дэвидом Кассом[англ.] с использованием идей Фрэнка Рамсея в 1963 году.

Фрэнк Пламптон Рамсей
Тьяллинг Чарльз Купманс

История создания

править

В первых моделях экономического роста (модель Солоу, модель Харрода — Домара) использовались экзогенно задаваемые параметры: «норма сбережений» и «темп научно-технического прогресса», от которых, в конечном итоге, и зависят темпы роста экономики. Исследователи же хотели получить обоснование темпов экономического роста внутренними (эндогенными) факторами, поскольку модели с нормой сбережений имели ряд недостатков. Эти модели не объясняли устойчивые различия в уровнях и темпах роста между развивающимися и развитыми странами. Для объяснения нормы сбережений как следствия решений экономических агентов, исследователи обратились к работе Фрэнка Рамсея «Математическая теория сбережений»[1], опубликованной в The Economic Journal[англ.] ещё в декабре 1928 года. В ней была выведена межвременная функция полезности потребителя и найдено условие оптимального выбора потребителя. Используя идеи Фрэнка Рамсея, будущий лауреат Нобелевской премии по экономике Тьяллинг Купманс в работе «Оптимальный рост в агрегированной модели накопления капитала», опубликованной как «работа для обсуждения» в Йельском университете 6 декабря 1963 года[2], и изданной в более подробной версии в сборнике The Econometric Approach to Development Planning в 1965 году[3], и Дэвид Касс[англ.] в работе «Оптимальный рост в агрегированной модели накопления капитала», изданной в июле 1965 года в журнале The Review of Economic Studies[англ.][4] представили модель Рамсея — Касса — Купманса[5][6][7][8] (также известную как модель Рамсея[5][6][9], неоклассическая модель экономического роста[5]), главной особенностью которой стало определение нормы сбережений в ходе решения задач оптимизации потребителями и фирмами, взаимодействующими в условиях совершенной конкуренции[5][6].

Работы Дэвида Касса и Тьяллинга Купманса фактически излагают одинаковую модель (за исключением условия трансверсальности, введенного Кассом). Хотя работа Касса опубликована позже и в ней есть ссылка на работу Купманса[4], при этом Купманс, в свою очередь, в изданной полной версии работы, в которой также появляется условие трансверсальности, ссылается на диссертацию Касса[3]. Оба исследователя предполагали, что пришли к этой модели «одновременно и независимо друг от друга». Подробно история с названием данной модели изложена в работе Стивена Спира и Уоррена Янга «Оптимальные сбережения и оптимальный рост: модель Рамсея — Малинво — Купманса»[10]. В ней авторы отмечают вклад Эдмона Малинво, который сформулировал условие трансверсальности раньше Касса, однако не применил его к рассматриваемой модели.

Описание модели

править

Базовые предпосылки модели

править

В модели рассматривается закрытая экономика. Фирмы максимизируют свою прибыль, а потребителиполезность. Фирмы функционируют в условиях совершенной конкуренции. Производится только один продукт  , используемый, как для потребления  , так и для инвестиций  . Темпы технологического прогресса  , роста населения   и норма выбытия капитала   — постоянны и задаются экзогенно. В качестве работника и потребителя в модели выступает бесконечно живущий индивид (или домохозяйство). Предполагается, что между разными поколениями существуют альтруистические связи, при принятии решений домохозяйство учитывает ресурсы и потребности не только настоящих, но и будущих своих членов, что делает его решения аналогичным решениям бесконечно живущего индивида. Время   изменяется непрерывно[3][4][11][12].

Доходы индивида состоят из заработной платы   и поступлений от активов  . Активы индивида   могут быть как положительными, так и отрицательными (долг). Процентная ставка   по доходам с активов и по долгу в модели принята одинаковой. В связи с этим в модели присутствует условие отсутствия схемы Понци (финансовой пирамиды): нельзя бесконечно выплачивать старые долги за счет новых[13]:

 ,
где   — в закрытой экономике весь капитал принадлежит резидентам, а величина активов индивида   совпадает с запасом капитала на одного работающего  .

Предпосылка о закрытой экономике означает, что произведенный продукт тратится на инвестиции и потребление, экспорт и импорт отсутствуют, сбережения равны инвестициям:  ,  [14].

Производственная функция   удовлетворяет неоклассическим предпосылкам[15][16]:

1) технологический прогресс увеличивает производительность труда (нейтрален по Харроду):  .

2) в производственной функции используются труд   и капитал  , она обладает постоянной отдачей от масштаба:  .

3) предельная производительность факторов положительная и убывающая:  .

4) производственная функция удовлетворяет условиям Инады, а именно, если запас одного из факторов бесконечно мал, то его предельная производительность бесконечно велика, если же запас одного из факторов бесконечно велик, то его предельная производительность бесконечно мала:  .

5) для производства необходим каждый фактор:  .

Население  , равное в модели совокупным трудовым ресурсам, растет с постоянным темпом  [17]:  [17].

Индивид предлагает одну единицу труда (предложение труда неэластично) и получает натуральную заработную плату (в единицах товара). Функция полезности бесконечно живущего индивида-потребителя имеет вид[17][2]:

 ,
где   — потребление на душу населения в момент времени  ;   — коэффициент межвременного предпочтения потребителя, .

Функция полезности   является сепарабельной, то есть потребление прошлых и будущих периодов не влияют на текущую полезность, влияет только потребление текущего периода. Она удовлетворяет условиям   и условиям Инады (при потреблении, стремящемся к нулю, предельная полезность стремится к бесконечности, при потреблении, стремящемся к бесконечности, предельная полезность стремится к нулю)[18][4]:  .

Для поиска решения модели используются удельные показатели: выпуск на единицу труда  , выпуск на единицу эффективного труда  , запас капитала на единицу эффективного труда  , потребление на единицу эффективного труда  [19].

Задача потребителя

править

Доходы индивида расходуются либо на потребление, либо на увеличение активов (сбережений). Население растет темпом  , поэтому активы на одного человека сокращаются с этим же темпом, то есть скорость изменения активов в каждый момент времени уменьшается на  . Таким образом, производная активов по времени  , выступающая в качестве бюджетного ограничения индивида, имеет вид[20]:

 .

Задача потребителя заключается в максимизации полезности   при бюджетном ограничении и при ограничении на отсутствие схемы Понци. Поскольку бюджетное ограничение представлено как производная по времени, то задача потребителя представлена в виде задачи динамической оптимизации. Её решение можно найти путём построения функция Гамильтона и нахождения её максимума с помощью принципа максимума Понтрягина[21][22].

Искомое решение имеет вид[24][25]:

 ,
где   — производная потребления по времени,   — эластичность предельной полезности по потреблению.

Поскольку для дальнейшего анализа необходимо, чтобы эта величина была постоянной, вводится дополнительная предпосылка о виде функции полезности: в качестве неё используют функцию с постоянной эластичностью замещения[26]:

 .

В таком случае,  , а значит[25]:

 ,
где   — производная потребления на душу населения по времени.

Найденное решение называется правилом Кейнса — Рамсея. Оно было получено Фрэнком Рамсеем, а содержательную интерпретацию ему дал Джон Кейнс[1][27].

Задача фирмы

править

Производственную функцию   можно записать через удельные показатели:  . Задача фирмы состоит в максимизации прибыли  [28]:

 

Поскольку фирмы функционируют в условиях совершенной конкуренции, то предельные производительности факторов производства равны их ценам[15][28]:

 ,
 .

Общее экономическое равновесие

править
 
Модель Рамсея — Касса — Купманса, фазовая плоскость
 
Модель Рамсея — Касса — Купманса, динамика нормы сбережений

Учитывая, что  , подставив полученные из решения задачи фирмы значения   и   в уравнение динамики активов, получим[29]:

 .

Поскольку  [30], решение задачи потребителя можно записать в следующем виде[31]:

 .

В стационарном состоянии  . Откуда, получаем, что  . В итоге, устойчивое состояние описывается системой уравнений[30][29]:

 
где   — потребление, а   — капиталовооружённость на единицу эффективного труда в устойчивом состоянии.

По условию трансверсальности[29]:

 ,

откуда следует что  . С учетом уравнения для  , это условие означает, что для существование устойчивого состояния необходимо, чтобы  . Также это означает, что в модели Рамсея — Касса — Купманса накопление капитала ниже, чем уровень максимизирующий потребление (модифицированное Золотое правило:  , где   — капиталовооружённость на единицу эффективного труда, соответствующая Золотому правилу), а значит, невозможна динамическая неэффективность в виде избыточного накопления капитала[32][33].

Достижение равновесия в модели можно проиллюстрировать при помощи фазовой плоскости. Линии   и   делят диаграмму на четыре квадранта. Слева от линии   траектория капиталовооружённости идет вверх, а справа от линии   — вниз. Выше линии   траектория капиталовооружённости идет влево, а ниже линии   — вправо. Таким образом, в квадранте I траектория идет влево и вверх, в квадранте II — влево и вниз, в квадранте III — вправо и вниз, в квадранте IV — вправо и вверх. В итоге, в модели существует только одна траектория, ведущая к равновесию — зеленая линия на иллюстрации. На этой линии расположено множество точек   и  , из которых система приходит в устойчивое состояние. Варианты траектории из других точек показаны красным, в этом случае в конечном итоге становится равной нулю либо капиталовооружённость ( ), либо потребление ( )[34]. Поскольку оптимальная траектория капиталовооружённости в модели имеет вид седла, её также называют «седловой путь»[35].

Динамика нормы сбережений по мере приближения к равновесному состоянию также показана на иллюстрации.

В рассматриваемой модели равновесия для централизованной и децентрализованной экономики одинаковы[36].

Конвергенция

править

Модель предполагает наличие условной конвергенции, то есть, что страны с малым уровнем капиталовооружённости будут расти более высокими темпами, чем страны с большим уровнем капиталовооружённости  , при условии, что устойчивое состояние у них одинаково. Скорость приближения к устойчивому состоянию можно оценить при помощи линейной аппроксимации посредством разложения в ряд Тейлора дифференциальных уравнений для   и  [37]:

 

Из условий устойчивости следует, что угловой коэффициент у второго слагаемого ( ) во втором уравнении равен -1, а в первом — 0. Используя уравнения устойчивого состояния, можно записать линейные аппроксимации в следующем виде[38]:

 

Решение этой системы уравнений имеет вид[38]:

 
где   — коэффициент, характеризующий скорость конвергенции.

Расчеты скорости конвергенции по модели Рамсея — Касса — Купманса с использованием параметров, близких к параметрам экономики США, предсказывают высокую скорость конвергенции, не наблюдаемую на реальных данных[39].

Фискальная политика в модели

править
 
Модель Рамсея — Касса — Купманса, фазовая плоскость, фискальная политика

Модель позволяет оценить влияние фискальной политики на равновесие. Предполагается, что величина налогов предполагается равной величине государственных расходов, которые не влияют на полезность индивидов и будущий выпуск. В этом случае уравнение для   примет следующий вид[40]:

 ,
где   — величина государственных расходов на единицу труда с постоянной эффективностью.

В результате фискальной политики кривая   сдвигается вниз на величину   и равновесие в модели устанавливается на прежнем уровне капиталовооружённости, но потребление снизится на величину  . Таким образом, в модели государственные расходы вытесняют потребление[41].

Влияние фискальной политики на равновесие проиллюстрировано при помощи фазовой плоскости.

Преимущества, недостатки и дальнейшее развитие модели

править

Наиболее важный вклад модели Рамсея — Касса — Купманса состоит в том, что она раскрыла механизм формирования нормы сбережений через решения потребителей, а также стала основой для дальнейшего анализа того, как решения индивидов формируют накопления физического и человеческого капитала, и как следствие, научно-технический прогресс. Это стало большим шагом вперёд по сравнению с моделью Солоу, и во многом по этой причине модель стала отправной точкой для многих исследователей, которые использовали её концептуальный и математический аппарат для построения своих моделей[42]. Неоклассическая модель экономического роста рассматривается во всех современных учебниках макроэкономики и теории экономического роста[43].

Оптимальная динамика потребления из модели (правило Кейнса — Рамсея) оказалась удачной заменой экзогенной норме сбережений и затем применялась и в более поздних моделях экономического роста, где в качестве экономического агента выступает бесконечно живущий индивид (или домохозяйство): в АК-модели, модели обучения в процессе деятельности, модели Удзавы — Лукаса, модели растущего разнообразия товаров[42].

Включение в модель внешних эффектов от уровня физического и человеческого капитала (для чего в некоторых случаях пришлось отказаться от 2, 3 и 4 предпосылки неоклассической производственной функции) привело к развитию АК-моделей[44].

Мигель Сидрауски добавил в модель денежную массу, чтобы проанализировать влияние денежной эмиссии и инфляции на реальные показатели в экономике. В итоге в расширенной модели равновесие получилось таким же, как и в модели без денежной массы, что означает отсутствие влияния предложения денег на реальные показатели. Полученное свойство было названо нейтральностью денег[45].

В качестве недостатка модели некоторые исследователи указывали бесконечно живущего индивида (или домохозяйство) в качестве вечного потребителя[46]. По мере взросления характер потребительского поведения меняется. Если в молодом возрасте индивид работает и делает сбережения, то в старости он эти сбережения тратит[47]. Этот факт был отражен в модели пересекающихся поколений, которая полностью отрицает альтруистические связи между поколениями[48][46].

Вместе с тем, модель не внесла существенного вклада в понимание причин межстрановых различий в уровне ВВП на душу населения и темпах его роста. Модель предполагает наличие условной конвергенции, что означает, что бедные страны должны расти быстрее богатых при условии схожести структурных параметров, но в реальности этого не происходит, как показали, например, исследования Р. Холла и Ч. Джонса[49], Дж. Де Лонга[50], П. Ромера[51]. Есть лишь единичные примеры (японское экономическое чудо, корейское экономическое чудо) когда бедные страны смогли догнать богатые по уровню ВВП на душу населения, в большинстве своём сближения уровня развития не происходит[52]. Также, как и в модели Солоу, научно-технический прогресс в модели Рамсея — Касса — Купманса не является следствием принятия решений экономическими агентами, а задается экзогенно[43].

В модели невозможна динамическая неэффективность, решения для централизованной и децентрализованной экономики одинаковы, а значит невозможно неоптимальное по Парето равновесие в экономике, потому модель не показывает, как неправильная экономическая политика или ограничивающие социальные институты могут замедлить развитие страны. Другими словами, модель не объясняет причин, по которым бедные страны остаются бедными и не могут догнать богатые[43].


Примечания

править
  1. 1 2 Ramsey F., 1928.
  2. 1 2 Koopmans, 1963.
  3. 1 2 3 Koopmans T., 1965.
  4. 1 2 3 4 Cass, 1965.
  5. 1 2 3 4 Аджемоглу, 2018, с. 437.
  6. 1 2 3 Туманова, Шагас, 2004, с. 228.
  7. Барро, Сала-и-Мартин, 2010, с. 115.
  8. Ромер Д., 2014, с. 75.
  9. Palgrave (Newbery), 2018, с. 11172—11178.
  10. Spear, Young, 2014.
  11. Аджемоглу, 2018, с. 437—445.
  12. Туманова, Шагас, 2004, с. 228—229.
  13. 1 2 Аджемоглу, 2018, с. 445.
  14. Туманова, Шагас, 2004, с. 187.
  15. 1 2 Туманова, Шагас, 2004, с. 233.
  16. Аджемоглу, 2018, с. 36—47.
  17. 1 2 3 Аджемоглу, 2018, с. 438.
  18. Туманова, Шагас, 2004, с. 229.
  19. Аджемоглу, 2018, с. 91.
  20. Аджемоглу, 2018, с. 440.
  21. 1 2 Туманова, Шагас, 2004, с. 230.
  22. Аджемоглу, 2018, с. 447.
  23. Palgrave (Kamihigashi), 2018, с. 13860.
  24. Туманова, Шагас, 2004, с. 231.
  25. 1 2 Аджемоглу, 2018, с. 449.
  26. Туманова, Шагас, 2004, с. 232.
  27. Туманова, Шагас, 2004, с. 230—231.
  28. 1 2 Аджемоглу, 2018, с. 439.
  29. 1 2 3 Аджемоглу, 2018, с. 472.
  30. 1 2 Туманова, Шагас, 2004, с. 237.
  31. Аджемоглу, 2018, с. 471.
  32. Туманова, Шагас, 2004, с. 235.
  33. Аджемоглу, 2018, с. 473.
  34. Аджемоглу, 2018, с. 461.
  35. Туманова, Шагас, 2004, с. 241.
  36. Туманова, Шагас, 2004, с. 236—237.
  37. Туманова, Шагас, 2004, с. 245—246.
  38. 1 2 Туманова, Шагас, 2004, с. 246.
  39. Туманова, Шагас, 2004, с. 247.
  40. Туманова, Шагас, 2004, с. 248.
  41. Туманова, Шагас, 2004, с. 248—249.
  42. 1 2 Аджемоглу, 2018, с. 484.
  43. 1 2 3 Аджемоглу, 2018, с. 485.
  44. Аджемоглу, 2018, с. 597—598.
  45. Sidrauski, 1967.
  46. 1 2 Аджемоглу, 2018, с. 501.
  47. Туманова, Шагас, 2004, с. 252.
  48. Туманова, Шагас, 2004, с. 253.
  49. Hall, Jones, 1996.
  50. De Long, 1988.
  51. Romer P. M., 1989.
  52. Аджемоглу, 2018, с. 698.

Литература

править