Колебательный контур
Колебательный контур — электрическая цепь, содержащая катушку индуктивности, конденсатор и источник электрической энергии. При последовательном соединении элементов цепи колебательный контур называется последовательным, при параллельном — параллельным[1].
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания (при отсутствии в ней источника электрической энергии).
Резонансная частота контура определяется формулой Томсона:
Принцип действия
правитьПусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе, составляет
При соединении конденсатора с катушкой индуктивности в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности), в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
где — индуктивность катушки, — максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть зарядка конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор в этом случае снова будет заряжен до напряжения .
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
Описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи больше тока, проходящего через весь контур, причём эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Математическое описание процессов
правитьНапряжение на идеальной катушке индуктивности при изменении протекающего тока:
Ток, протекающий через идеальный конденсатор, при изменении напряжения на нём:
Из правил Кирхгофа, для цепи, составленной из параллельно соединённых конденсатора и катушки, следует:
- — для напряжений,
и
- — для токов.
Совместно решая систему дифференциальных уравнений (дифференцируя одно из уравнений и подставляя результат в другое), получаем:
Это дифференциальное уравнение гармонического осциллятора с циклической частотой собственных колебаний (она называется собственной частотой гармонического осциллятора).
Решением этого уравнения 2-го порядка является выражение, зависящее от двух начальных условий:
где — некая постоянная, определяемая начальными условиями, называемая амплитудой колебаний, — также некоторая постоянная, зависящая от начальных условий, называемая начальной фазой.
Например, при начальных условиях и амплитуде начального тока решение сведётся к:
Решение может быть записано также в виде
где и — некоторые константы, которые связаны с амплитудой и фазой следующими тригонометрическими соотношениями:
Колебательный контур может быть рассмотрен как двухполюсник, представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как
где i — мнимая единица.
Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).
Эта частота равна
и совпадает по значению с собственной частотой колебательного контура.
Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. Однако выбор соотношения между L и C зачастую не бывает полностью произвольным, так как обуславливается требуемым значением добротности контура.
Для последовательного контура добротность растёт с увеличением L:
где R — активное сопротивление контура. Для параллельного контура:
где , ( — сумма активных сопротивлений в цепи катушки и цепи конденсатора[2]).
Понятие добротности связано с тем, что в реальном контуре существуют потери энергии (на излучение[3] и нагрев проводников). Обычно считают, что все потери сосредоточены в некотором эквивалентном сопротивлении , которое в последовательном контуре включено последовательно с L и C, а в параллельном — параллельно им. Малые потери (то есть высокая добротность) означают, что в последовательном контуре мало, а в параллельном — велико. В низкочастотном последовательном контуре легко обретает физический смысл — это в основном активное сопротивление провода катушки и проводников цепи.
Практическое применение
правитьРезонансные контуры широко используются как полосовые и режекторные фильтры — в усилителях, радиоприёмниках, а также в различных устройствах автоматики. Например, на самолётах Ил-62М, Ил-76 и Ту-154М установлены блоки регулирования частоты БРЧ-62БМ, в главном элементе которых — блоке измерения частоты БИЧ-1 — имеются два колебательных контура, настроенных на частоты 760 и 840 Гц. На них поступает напряжение с номинальной частотой 800 Гц от подвозбудителя генератора (сам генератор при этом выдаёт 400 Гц). При отклонении частоты от номинальной реактивное сопротивление одного из контуров становится больше, чем другого, и БРЧ выдаёт на привод постоянных оборотов генератора управляющий сигнал для коррекции оборотов генератора. Если частота поднялась выше номинальной — сопротивление второго контура станет меньше, чем первого, и БРЧ выдаст сигнал на уменьшение оборотов генератора, если частота упала — то наоборот. Так поддерживается постоянство частоты напряжения генератора при изменении оборотов двигателя[4].
См. также
правитьПримечания
править- ↑ Попов, 2003.
- ↑ Бакалов В. П., Дмитриков В. Ф., Крук Б. И. Основы теории цепей: Учебник для вузов; Под ред. В. П. Бакалова. — 3-е изд., перераб. и доп. — М.: Горячая линия — Телеком, 2007. — с.: ил. Архивная копия от 19 октября 2016 на Wayback Machine ISBN 5-256-01472-2, с. 123
- ↑ Если колебания являются высокочастотными.
- ↑ Блок регулирования частоты БРЧ-62БМ. Техническое описание и инструкция по эксплуатации
Литература
править- Попов В. П. Основы теории цепей: Учеб. для вузов / В. П. Попов. — 4-е изд., испр. — М.: Высш. шк., 2003. — 575 с.
- Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739)
- Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.:Радио и связь, 1983
- Фролов А. Д. Радиодетали и узлы. — М.: Высшая школа, 1975. — С. 195—223. — 440 с. — (Учебное пособие для вузов).