Изолированная особая точка

Изолированная особая точка — точка, в некоторой проколотой окрестности которой функция однозначна и аналитична, а в самой точке либо не задана, либо недифференцируема. Например, точка является изолированной особой точкой для функции , а особая точка функции изолированной не является, поскольку основание обращается в нуль при для всякого целого .

Если  — изолированная особая точка для , то , будучи аналитической в некоторой проколотой окрестности этой точки, разлагается в ряд Лорана, сходящийся в этой окрестности:

.

Первая часть этого разложения называется правильной частью ряда Лорана, вторая — главной частью ряда Лорана.

Тип особой точки функции определяется по главной части этого разложения — точка может быть устранимой (если главная часть равна нулю), полюсом (главная часть содержит конечное число ненулевых членов) или существенно особой (главная часть содержит бесконечное число ненулевых членов).

Литература

править
Сообщить об ошибке