Гиперцикл (геометрия)
Гиперокружность, гиперцикл или эквидистанта[1] — это кривая, точки которой имеют постоянное ортогональное расстояние до прямой (которая называется осью гиперокружности).
Если задана прямая L и точка P, не лежащая на L, можно построить гиперцикл, взяв все точки Q, лежащие на той же стороне от L, что и P, и на том же расстоянии от L, что и P.
Прямая L называется осью, центром или базовой прямой гиперцикла.
Прямые, перпендикулярные оси, которые перпендикулярны и гиперциклу, называются нормалями гиперцикла.
Отрезки нормали между осью и гиперциклом называются радиусами.
Общая длина этих отрезков называется расстоянием или радиусом гиперцикла[2].
Гиперциклы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
Свойства, подобные свойствам евклидовых прямых
правитьГиперциклы в геометрии Лобачевского имеют некоторые свойства, похожие на свойства прямых в евклидовой геометрии:
- На плоскости, если задана прямая и точка вне неё, существует только один гиперцикл для данной прямой, содержащий эту точку (сравните с аксиомой Плейфера для евклидовой геометрии).
- Никакие три точки гиперцикла не лежат на одной прямой.
- Гиперцикл симметричен любой прямой, перпендикулярной ему (отражение гиперцикла относительно прямой, перпендикулярной гиперциклу, даёт тот же самый гиперцикл.)
Свойства, подобные свойствам евклидовых окружностей
правитьГиперциклы в геометрии Лобачевского имеют некоторые свойства, похожие на свойства окружности в евклидовой геометрии:
- Прямая, перпендикулярная хорде гиперцикла в её середине, является радиусом и делит стягиваемую дугу пополам.
- Пусть AB — хорда и M — её середина.
- Ввиду симметрии, прямая R через M, перпендикулярная хорде AB, должна быть ортогональна оси L.
- Таким образом, R является радиусом.
- Также ввиду симметрии, R делит дугу AB пополам.
- Ось и расстояние гиперцикла определены однозначно.
- Предположим, что гиперцикл C имеет две различные оси и .
- Используя предыдущее свойство дважды с различными хордами, мы можем определить два различных радиуса и . и будут тогда перпендикулярны как , так и , что даёт прямоугольник. Получили противоречие, поскольку прямоугольник невозможен в геометрии Лобачевского.
- Гиперциклы имеют одинаковые расстояния тогда и только тогда, когда они конгруэнтны.
- Если они имеют одинаковые расстояния, нам нужно привести оси к совпадению путём жёсткого движения[англ.][3], а тогда все радиусы совпадут. Поскольку радиус тот же самый, точки двух гиперциклов совместятся.
- Наоборот, если они конгруэнтны, расстояние должно быть тем же самым согласно предыдущему свойству.
- Прямые пересекают гиперцикл не более чем в двух точках.
- Пусть прямая K пересекает гиперцикл C в двух точках A и B. Как и ранее, мы можем построить радиус R гиперцикла C через среднюю точку M хорды AB. Заметим, что прямая K ультрапараллельна оси L, поскольку имеют общий перпендикуляр R. Также, две ультрапараллельные прямые имеют минимальное расстояние на общем перпендикуляре и расстояние монотонно увеличивается по мере отклонения от перпендикуляра.
- Это означает, что точки K внутри AB будут находиться на расстоянии от L меньшем, чем расстоянии от A и B до L, в то время как точки K вне отрезка AB будут иметь большее расстояние. В заключение, никаких других точек K нет на C.
- Два гиперцикла пересекаются максимум в двух точках.
- Пусть и будут гиперциклами, пересекающимися в точках A, B и C.
- Если — прямая, ортогональная AB и проходящая через среднюю точку, мы знаем, что это радиус как для , так и для .
- Аналогично мы строим радиус через среднюю точку отрезка BC.
- и одновременно ортогональны осям и гиперциклов и соответственно.
- Мы уже доказали, что в этом случае и должны совпадать (иначе мы получим прямоугольник).
- Тогда и имеют те же оси и по меньшей мере одну общую точку, а потому они имеют то же самое расстояние и тоже совпадают.
- Никакие три точки гиперцикла не лежат на одной прямой.
- Если точки A, B и C гиперцикла лежат на одной прямой, то хорды AB и BC принадлежат одной и той же прямой K. Пусть и являются радиусами, проходящими через средние точки хорд AB и BC. Мы знаем, что ось L гиперцикла перпендикулярна как , так и .
- Но K также перпендикулярна им. Тогда расстояние должно равняться 0, и гиперцикл вырождается в прямую.
Другие свойства
править- Длина дуги гиперцикла между двумя точками
- больше длины отрезка между этими двумя точками,
- меньше длины дуги одного из двух орициклов между этими двумя точками
- меньше длины любой дуги окружности между этими двумя точками.
- Гиперцикл и орицикл пересекаются максимум в двух точках.
Длина дуги
правитьНа плоскости Лобачевского с постоянной кривизной длину дуги гиперцикла можно вычислить из радиуса и расстояния между точками, в которых нормали пересекают ось, с помощью формулы:
Построение
правитьВ дисковой модели Пуанкаре гиперболической плоскости гиперциклы представляются прямыми и дугами окружности, пересекающими граничную окружность не под прямыми углами. Представление оси гиперцикла пересекает граничную окружность в тех же точках, но под прямыми углами.
В модели полуплоскости Пуанкаре гиперболической плоскости гиперциклы представляются прямыми и дугами окружности, пересекающими граничную прямую не под прямыми углами. Представление оси гиперцикла пересекает граничную прямую в тех же точках, но под прямыми углами.
Примечания
править- ↑ В книге Смогоржевского используется термин эквидистанта, хотя, вообще говоря, эквидистанта — это более широкое понятие. Здесь нужно говорить об эквидистанте прямой на гиперболической плоскости.
- ↑ Martin, 1986.
- ↑ То есть перемещение фигуры как твёрдого тела.
- ↑ Смогоржевский, 1982, с. 66.
Литература
править- Martin Gardner. Chapter 4 of The Colossal Book of Mathematics // Non-Euclidean Geometry. — W. W. Norton & Company, 2001. — ISBN 978-0-393-02023-6.
- Greenberg M. J. Euclidean and Non-Euclidean Geometries: Development and History. — 3rd edition. — Freeman W. H., 1994.
- David C. Royster. Neutral and Non-Euclidean Geometries.
- Смогоржевский А. С. О геометрии Лобачевского. — Москва: Государственное издательство технико-теоретической литературы, 1982. — Т. 23. — (Популярные лекции по математике).
- George E. Martin. The foundations of geometry and the non-euclidean plane. — 1., corr. Springer. — New York: Springer-Verlag, 1986. — С. 371. — ISBN 3-540-90694-0.
Для улучшения этой статьи желательно:
|