Число независимости графа  — это размер наибольшего независимого множества вершин в нём.

Поскольку задача о независимом множестве является NP-полной, то неизвестны алгоритмы определения числа независимости в произвольном графе, работающие за полиномиальное время.

В любом графе число независимости связано с числом вершинного покрытия первым тождеством Галлаи: , более того, дополнение к наибольшему независимому множеству вершин является наименьшим вершинным покрытием. Используя этот факт, в двудольном графе можно найти за полиномиальное время, поскольку задача о наименьшем вершинном покрытии в нём сводится к поиску наибольшего паросочетания.

В графе , в котором отсутствуют изолированные вершины (вершины степени 0), также справедливо неравенство , где  — число рёберного покрытия графа . В двудольном графе без изолированных вершин, вследствие Теоремы Кёнига, .

Ссылки

править
  • László Lovász, Michael D. Plummer. Matching Theory. — North-Holland, 1986. — ISBN 0-444-87916-1.