Постоянная эластичность замещения

(перенаправлено с «Функция CES»)

Постоянная эластичность замещения (англ. constant elasticity of substitution, CES) — свойство, которым может обладать производственная функция или функция полезности. Постоянство эластичности замещения означает, что эластичность пропорции аргументов функции по отношению к пропорции их предельных продуктов будет неизменной при любых значениях аргументов. Функции с постоянной эластичностью замещения иногда называют функциями CES или CES-функциями по английской аббревиатуре данного термина. Некоторые другие популярные производственные функции представляют собой частные или предельные случаи данной функции. Например, функция Кобба — Дугласа является функцией с единичной эластичностью замещения, а производственная функция Леонтьева — с нулевой эластичностью замещения.

Формальное определение

править

Однородная функция CES в дискретном случае имеет следующий вид:

 , где  ,  

Параметр   определяет степень однородности, в частности при   имеем линейно-однородную функцию.

Иногда используют также обобщённую неоднородную функцию CES (функцию Солоу):

 

Однородная функция CES в непрерывном случае имеет следующий вид:

 

Здесь множество благ или факторов производства   представляет собой единичный континуум.

Свойства и связь с другими функциями

править

Основное свойство данной функции — постоянная эластичность замещения. А именно, можно показать, что эластичность замещения для данной функции равна

 

Если   стремится к нулю, то данная функция стремится к производственной функции Кобба-Дугласа, эластичность замещения которой как раз равна 1. Если   стремится к бесконечности, то имеем функцию с нулевой эластичностью замещения — производственную функцию Леонтьева.

Использование

править

Функция полезности с постоянной эластичностью замещения используется в модели монополистической конкуренции Диксита — Стиглица — Кругмана. Модель позволяет анализировать рынки несовершенных субститутов. Она объясняет появление наценки, то есть превышение цены товара над предельными издержками. В предельном случае, когда параметр функции стремится к единице, эластичность становится равной бесконечности. При этом модель описывает совершенно конкурентный рынок.

См. также

править