Теорема Шеннона — Лупанова
Теорема Шеннона — Лупанова определяет число элементов, необходимых для реализации автомата в заданном автоматном базисе[неизвестный термин].
Формулировка
править1. Для любого базиса : , где — константа, зависящая от базиса.
2. Для любого доля функций , для которых стремится к нулю с ростом .
Пояснения
правитьЗдесь , где максимум берется по всем функциям от переменных[прояснить]. Знак обозначает асимптотическое равенство: , если . Смысл второго утверждения теоремы в том, что с ростом почти все функции реализуются со сложностью, близкой к верхней границе .
Доказательство
правитьДоказательство есть в статье[1].
Примечания
править- ↑ Лупанов О. Б. О синтезе некоторых классов управляющих систем // Проблемы кибернетики, М., Физматгиз, 1963, вып. 10, c. 63-97.
Литература
править- Кузнецов О. П., Адельсон-Вельский Г. М. Дискретная математика для инженера. — М.: Энергоатомиздат, 1988. — 480 с. — ISBN 5-283-01563-7.