Среднето́новый строй (нем. mitteltönige Stimmung, англ. meantone tuning) или среднето́новая темпера́ция — музыкальный строй, основанный на последовательной цепи квинт, каждая из которых темперирована (уменьшена по сравнению с акустически чистой на одну и ту же величину). Таким образом, в среднетоновом строе все квинты имеют одно и то же отношение частот звуков (такое свойство строя часто также называют регулярностью[1]). Характерной особенностью среднетоновых строёв является наличие в них «средних целых тонов» (отсюда и название): в таких строях большая секунда является точной половиной большой терции.

Особое место среди среднетоновых строёв занимает строй, в котором все квинты темперированы на 1/4 дидимовой коммы: в нём большие терции, получаемые в результате откладывания четырёх темперированных таким образом квинт, оказываются акустически чистыми. Часто термин «среднетоновый» относят именно к этому строю.

Терминология и исторические замечания

править
 
Схема деления монохорда
в среднетоновом строе на 2/7 коммы
(Из «Основ гармоники» Дж. Царлино, 1558)
 
Схема деления монохорда
в среднетоновом строе на 1/4 коммы
(Из «Доказательств гармоники» Дж. Царлино,
2-е изд., 1589)

Величина, на которую темперируются квинты в среднетоновом строе, специфицируется в его названии, причём она обычно выражается в долях дидимовой коммы: например, «среднетоновый строй на 2/7 коммы» (англ. 2/7-comma meantone) — это строй, в котором все квинты в квинтовой цепи темперированы (уменьшены) на 2/7 (дидимовой) коммы. Определение среднетонового строя на 2/7 коммы у Дж. Царлино (1558)[2] является первым документальным математически строгим описанием темперированного строя (в собственном смысле этого термина)[3].

Среднетоновый строй на 1/4 коммы (англ. 1/4-comma meantone или quarter-comma meantone) был впервые описан Дж. Царлино (1571)[4] и Ф. Салинасом (1577)[5]. М. Преториус (1619)[6] дал как практический метод настройки органа в среднетоновом строе на 1/4 коммы, так и весьма полное теоретическое описание последнего. В связи с этим данный строй также получил название «преторианского» (преториева, нем. prätorianische Stimmung), особенно употребительное в немецкой литературе, начиная с XVII века (у А. Веркмейстера и др.).

Средний целый тон (большая секунда) «преторианского» строя, в отличие от большего (9:8) и меньшего (10:9) целых тонов чистого строя, является точной половиной чистой большой терции (5:4), и, кроме того, является средним между бо́льшим и меньшим целыми тонами.

Согласно общему определению, к среднетоновым строям относится и равномерно темперированный, поскольку в нём все квинты темперированы на одну и ту же величину — 1/12 пифагоровой коммы[7]. Целый тон в равномерно темперированном строе является средним, деля ровно пополам равномерно темперированную большую терцию[8].

В русской научно-популярной литературе (например, у А. М. Волконского) вместо термина «среднетоновый» встречается также термин «мезотонический», являющийся морфологической передачей французского и итальянского терминов (фр. Tempérament mésotonique, итал. Temperamento mesotonico)[9].

Среднетоновый строй на 1/4 коммы («преторианский»)

править

Теоретическая основа

править

Если в цепочке из четырёх квинт — например,

C-G-d-a-e1,

все квинты настроены чисто (имеют соотношение звуковых частот 3:2), то большая терция C-E, образованная «по её краям» (с учётом переноса звука e1 на две октавы вниз имеет соотношением звуковых частот 81:64), оказывается большой терцией пифагорейского строя (дитоном). Большая терция пифагорейского строя шире более благозвучной большой терции чистого строя (5:4) на дидимову комму (81:80). Следовательно, если каждую квинту в приведённой цепочке темперировать (почти неощутимо для слуха изменить) с уменьшением на 1/4-ю часть дидимовой коммы, то большая терция через две октавы C-e1 по краям цепочки будет чисто настроенным, то есть звучащим без биений интервалом натурального звукоряда между обертонами 1 и 5. Соотношение звуковых частот 1/4-й части дидимовой коммы равно

 ,

что делает соотношение звуковых частот среднетоновой квинты (квинты, уменьшенной на 1/4-ю часть дидимовой коммы), равным

  [10], или 696,5784 цента.

Сравнение с интервалами чистого строя

править

В следующей таблице приведены сравнения основных интервалов «преторианского» строя с интервалами чистого строя. Символом   обозначено отношение частот ¼ коммы[11].

Интервал среднетонового
строя на ¼ коммы
Q O Отношение
частот
Связь с интервалами чистого строя Величина
в центах
увеличенная прима,
хроматический полутон
7 -4     превосходит меньший хроматический полутон чистого строя (25:24) на ¼ коммы 76,05
малая секунда,
диатонический полутон
-5 3     превосходит меньший диатонический полутон чистого строя (16:15) на ¼ коммы 117,11
большая секунда,
(средний) целый тон
2 -1    
 
больше меньшего целого тона (10:9) на ½ коммы и меньше большего целого тона (9:8) на ½ коммы;

средний между этими целыми тонами; точная половина чистой большой терции (5:4)

193,16
малая терция -3 2     меньше чистой малой терции (6:5) на ¼ коммы 310,26
большая терция 4 -2   является чистой большой терцией 386,31
кварта -1 1     превосходит чистую кварту (4:3) на ¼ коммы 503,42
квинта 1 0     меньше чистой квинты (3:2) на ¼ коммы 696,58
малая секста -4 3   является чистой малой секстой 813,69
большая секста 3 -1     больше чистой большой сексты (5:3) на ¼ коммы 889,74

Построение

править

Основной тон: C, начало построения Es и далее по квинтовому кругу

Построение звукоряда можно произвести как и в пифагорейском строе, только взяв в качестве основы не чистую квинту, а среднетоновую, которая имеет отношение частот:

 , то есть такая среднетоновая квинта примерно на 5 центов у́же чистой.

Обозначение ноты Отношение частоты к тонике
Es  
B  
F  
C  
G  
D  
A  
E  
H  
Fis  
Cis  
Gis  

Таким образом можно получить следующие интервалы

  • Восемь чистых больших терций: Es-G, B-D, F-A, C-E, G-H, D-Fis, A-Cis, E-Gis
  • Одиннадцать среднетоновых квинт: Es-B, B-F, F-C, C-G, G-D, D-A, A-E, E-H, H-Fis, Fis-Cis, Cis-Gis
  • Одну увеличенную волчью квинту (уменьшённую сексту): Gis-Es с соотношением частот
 
  • Четыре несколько завышенных больших терций (уменьшенные кварты): H-Es, Fis-B, Cis-F, Gis-C
 

Наличие завышенных терций связано с наличием малой диесы, то есть с неравенством трёх больших терций одной октаве.

Другие среднетоновые строи

править

Примечания

править
  1. Термин восходит к en:Р. Бозанкету. В другой терминологии (особенно присущей современной математической теории музыкальных строёв), регулярным строем (темперацией) называют абстрактно-математический строй, состоящий из бесконечного количества звуков (ступеней), относительные частоты которых образуют (естественным образом) конечнопорождённую свободную абелеву группу — ср., например, en:Regular Temperament.
  2. Istitutioni harmoniche (1-е изд., 1558) II, 42—47.
  3. См., например, Rasch, R. Tuning and Temperament // The Cambridge History of Western Music Theory. — NY: Cambridge University Press, 2002. — P. 193—222. — ISBN 0521623715.
  4. Dimostrationi harmoniche (1-е изд., 1571), p. 263—269. В литературе, начиная с А. Дж. Эллиса, долгое время господствовало мнение о том, что среднетоновый строй на 1/4 коммы был впервые описан П. Аароном в последней главе книги Il Toscanello della Musica (1523). Однако описание Аарона имеет общий характер, без указания величин темперации. Его требование делать терции «звучными и чистыми, то есть слитными, насколько возможно» (sonora & giusta, cioe unita al suo possibile) нельзя всегда понимать буквально как требование их акустической чистоты (5:4), поскольку далее он явно указывает на их темперированность в своей настройке (per laqual participatione, restano spuntate overo diminute, le terze & seste). См. подробный анализ темперации П. Аарона, например, в статье Lindley, M. Early 16th-Century Keyboard Temperaments // Musica Disciplina. — 1974. — Т. 28. — P. 129—151.; JSTOR 20532169. Кроме того, Царлино, определяя среднетоновый строй с темперациями квинт на 1/4 коммы, называет его новым.
  5. De musica libri septem, Liber III, Cap. XIII—XIV. Салинас отмечает, что к этому строю он пришёл независимо от Царлино: «Eam nos, dum essemus Romae iuvenes, excogitasse videbamur, et postea a Iosepho Zarlino traditam invenimus, nihil ab ea, quam nos excogitaueramus, discrepantem» («В молодости, когда я был в Риме, мне казалось, что это [именно] я изобрёл, а позже я обнаружил, что это же изложил Дж. Царлино, и то, что он изложил, ни в чём не отличалось от того, что изобрел я».) Поездка Салинаса в Рим состоялась в 1538 году — задолго до публикации им и Царлино описания среднетонового строя на 1/4 коммы.
  6. Syntagma Musicum, T. II De Organographia, IV Theil, Cap. IV
  7. Поскольку 1/12 часть пифагоровой коммы практически равна 1/11 части дидимовой (разность между этими частями комм составляет менее 0,00012 цента), равномерно темперированный строй многими авторами также классифицируется как среднетоновый строй на 1/11 (дидимовой) коммы — отличие такого строя от точно рассчитанного равномерно-темперированного имеет лишь формально-математический характер.
  8. Иногда формально-математически к среднетоновым строям относят и пифагоров строй, в котором все квинты в квинтовой цепи — чистые, то есть не темперированы или, другими словами, «темперированы на нулевую величину». С такой точки зрения пифагоров строй является «среднетоновым строем на 0 долей коммы». Целый тон пифагорова строя (9:8) является точной половиной дитона, то есть большой терции пифагорова строя (81:64).
  9. В английской научной литературе конца XIX — начала XX века также употреблялся термин mesotonic (например, А. Дж. Эллисом).
  10. Соотношение частот звуков   квинты «преторианского» строя можно также получить из уравнения  , выражающего соотношение «четыре квинты „преторианского“ строя без двух октав дают большую терцию чистого строя».
  11. То есть  .

Ссылки

править
  • Практические способы настройки музыкального инструмента на слух (англ.):

Литература

править
  • Волконский, А. Основы темперации. — М.: Композитор, 1998.
  • Lindley, M. Historical Survey of Meantone Temperaments to 1620 // Early Keyboard Journal. — 1990. — Т. 8.
  • Leedy, D. A Venerable Temperament Rediscovered // Perspectives of New Music. — Vol. 29, No. 2 (Summer, 1991), pp. 202–211 (JSTOR #833439)
  • Lindley, M. Fifteenth-Century Evidence for Meantone Temperament // Proceedings of the Royal Musical Association. — (1975—1976). — Т. 102. — P. 37—51. (JSTOR #766092)
  • Lindley, M. Lutes, viols, and temperaments. — Cambridge etc.: Cambridge University Press, 1984. — P. 43—66. — ISBN 0521288835.
  • Lindley M., Turner-Smith R. F. Mathematical models of musical scales: a new approach. — Bonn: Verlag für Systematische Musikwissenschaft, 1993. — P. 52—54. — ISBN 3922626661.
  • Lindley, M. Zarlino's 2/7-comma meantone temperament // Music in Performance and Society. Essays in Honor of Roland Jackson (Detroit Monographs in Musicology) / M. Cole and J. Koegel, ed.. — Michigan: Harmonie Park Press, 1997. — ISBN 0899901069.
  • Barbour, J. Murray. Tuning and Temperament: A Historical Survey. — New York: Dover Publications, 2004. — P. 25—44. — ISBN 0486434060. (Репринт первого издания 1951 г., East Lancing, Michigan State College Press)