Разложение Холецкого

Разложе́ние Холе́цкого (метод квадратного корня) — представление симметричной положительно определённой матрицы в виде , где — нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме: , где — верхняя треугольная матрица. Разложение Холецкого всегда существует и единственно для любой симметричной положительно определённой матрицы.

Существует также обобщение этого разложения на случай комплекснозначных матриц. Если — положительно определённая эрмитова матрица, то существует разложение , где — нижняя треугольная матрица с положительными действительными элементами на диагонали, а эрмитово-сопряжённая к ней матрица.

Разложение названо в честь французского математика польского происхождения Андре-Луи Шолески[англ.] (1875—1918).

Алгоритм

править

Элементы матрицы   можно вычислить, начиная с верхнего левого угла матрицы, по формулам

 
Выражение под корнем всегда положительно, если   — действительная положительно определённая матрица.

Вычисление происходит сверху вниз, слева направо, т. е. сперва  , а затем  .

Для комплекснозначных эрмитовых матриц используются формулы

 

Приложения

править

Это разложение может применяться для решения системы линейных уравнений  , если матрица   симметрична и положительно определена. Такие матрицы часто возникают, например, при использовании метода наименьших квадратов и численном решении дифференциальных уравнений.

Выполнив разложение  , решение   можно получить последовательным решением двух треугольных систем уравнений:   и  . Такой способ решения иногда называется методом квадратных корней.[1] По сравнению с более общими методами, такими как метод Гаусса или LU-разложение, он устойчивее численно и требует примерно вдвое меньше арифметических операций.[2]

Разложение Холецкого также применяется в методах Монте-Карло для генерации коррелированных случайных величин. Пусть   — вектор из независимых стандартных нормальных случайных величин, а   — желаемая ковариационная матрица. Тогда вектор   будет иметь многомерное нормальное распределение с нулевым математическим ожиданием и ковариационной матрицей  .[3]

Реализация в математических пакетах программ

править
  • В SAS используется функция ROOT(matrix), входящая в пакет SAS IML.
  • В системах MATLAB, Octave, R разложение выполняется командой U = chol(A).
  • В Maple и NumPy существует процедура cholesky в модуле linalg.
  • В Mathematica используется процедура CholeskyDecomposition[A].
  • В MathCAD для разложения используется функция cholesky(A)
  • В GSL используется функция gsl_linalg_cholesky_decomp.
  • В библиотеке от Google ceres-solver[4].
  • В библиотеке Apache Commons Math (начиная с версии 2.0) используется класс CholeskyDecomposition[5].
  • В библиотеке Torch присутствует функция torch.potrf[6].
  • В библиотеке JAMA языка программирования java.
  • В библиотеке Intel Data Analytics Acceleration Library присутствует алгоритмcholesky::Batch.

Примечания

править
  1. Вержбицкий В. М. Основы численных методов. — М.: Высшая школа, 2009. — 840 с. — ISBN 9785060061239.
  2. William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. 2.9 Cholesky Decomposition // Numerical Recipes in C. — 2nd edition. — Cambridge: Cambridge University Press. — ISBN 0-521-43108-5.
  3. Martin Haugh. Generating Correlated Random Variables Архивировано 5 января 2012 года..
  4. Ceres Solver — A Large Scale Non-linear Optimization Library. Дата обращения: 7 сентября 2017. Архивировано из оригинала 2 сентября 2017 года.
  5. CholeskyDecomposition Архивная копия от 7 ноября 2017 на Wayback Machine.
  6. torch.potrf Архивная копия от 20 августа 2017 на Wayback Machine.