Примарный идеал

В коммутативной алгебре идеал Q коммутативного кольца A называется примарным, если он не совпадает со всем кольцом, и для любого элемента Q вида xy либо x, либо yn для некоторого n>0 также является элементом Q. Например, в кольце целых чисел Z идеал примарен тогда и только тогда, когда он имеет вид (pn), где p — простое число.

Примарные идеалы важны в теории коммутативных колец, потому что любой идеал нётерова кольца имеет примарное разложение, то есть может быть записан как пересечение конечного числа примарных идеалов. Этот результат известен как теорема Ласкера — Нётер.

Примарные идеалы обычно рассматриваются в теории коммутативных колец, поэтому в дальнейших примерах кольцо предполагается коммутативным и с единицей.

Примеры и свойства

править
  • Любой простой идеал является примарным.
  • Идеал примарен тогда и только тогда, когда в факторкольце по нему любой делитель нуля является нильпотентным.
  • Если Q — примарный идеал, то его радикал P является простым. В этом случае Q называется P-примарным.
  • Если P — максимальный простой идеал, то любая степень P — примарный идеал. Однако не все P-примарные идеалы являются степенями P, например, идеал (xy2) является P-примарным для P = (xy) в кольце k[xy], но не является степенью P.
  • Если A — нётерово кольцо и P — простой идеал, то ядро   отображения из A в его локализацию по идеалу P является пересечением всех P-примарных идеалов.[1]

Примечания

править
  1. Атья-Макдональд, Corollary 10.21

Литература

править
  • Атья М., Макдональд И. Введение в коммутативную алгебру. — Факториал Пресс, 2003 — ISBN 5-88688-067-4.
  • Gorton, Christine; Heatherly, Henry (2006), "Generalized primary rings and ideals", Math. Pannon., 17 (1): 17—28, ISSN 0865-2090, MR 2215638