Для системы линейных уравнений с неизвестными (над произвольным полем)
с определителем матрицы системы , отличным от нуля, решение записывается в виде
(-й столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:
В такой форме метод Крамера справедлив без предположения, что отличен от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.
Метод Крамера требует вычисления определителей порядка . При использовании метода Гаусса для вычисления определителей метод имеет сложность по элементарным операциям сложения-умножения порядка , что сложнее, чем метод Гаусса при прямом решении системы. Поэтому метод, с точки зрения затрат времени на вычисления, считался непрактичным. Однако в 2010 году было показано, что метод Крамера может быть реализован со сложностью , сравнимой со сложностью метода Гаусса[2].
Любые методы, связанные с алгебраическими преобразованиями, чреваты делением на ноль — а метод Крамера без всяких ухищрений даст решение всегда, если оно существует.
↑Ken Habgood and Itamar Arel. 2010. Revisiting Cramer's rule for solving dense linear systems. In Proceedings of the 2010 Spring Simulation Multiconference (SpringSim '10)