Потенциал Пёшль — Теллера — функция потенциальной энергии электростатического поля, предложенная венгерскими физиками Гертой Пёшль и Эдвардом Теллером[1] как приближение для энергии двухатомной молекулы, альтернативный потенциалу Морзе. Потенциал имеет вид

на промежутке , на границе которого он обращается в бесконечность. Параметры удовлетворяют условиям и . Иногда потенциалом Пёшль — Теллера называют модифицированный потенциал Пёшль — Теллера.

График потенциала Пёшль — Теллера с фиксированным параметром и различными значениями

Уравнение Шрёдингера с потенциалом Пёшль — Теллера

править

Стационарное уравнение Шрёдингера с потенциалом Пёшль — Теллера имеет вид:

 

Если ввести обозначение  , то оно примет вид:

 

После замены переменных

 

получим

 

Так как точки 0 и 1 являются особыми, то естественно представить решение в виде:

 

Если выбрать

 

то уравнение приведётся к гипергеометрическому виду:

 

Общее решение данного уравнения может быть выражено через гипергеометрические функции:

 

где введены обозначения:

 

Если учесть граничные условия:

 

то получим собственные функции

 

где константа вычисляется с учётом нормировки:

 

Соответствующие уровни энергии равны:

 

Примечания

править
  1. G. Pöschl, E. Teller. Bemerkungen zur Quantenmechanik des anharmonischen Oszillators (нем.) // Zeitschrift für Physik. — 1933. — Bd. 83, Nr. 3-4. — S. 143–151. — doi:10.1007/BF01331132.

Литература

править
  • З. Флюгге. Задачи по квантовой механике. — Издательство ЛКИ, 2008. — Т. 1.