Ортотреуго́льник (или ортоцентрический треугольник) — треугольник , вершины которого являются основаниями высот исходного треугольника . Для ортотреуго́льника исходный треугольник является треугольником трёх внешних биссектрис. Точка пересечения высот исходного треугольника называется ортоцентром и является центром вписанной окружности ортотреуго́льника .

Свойства

править
  • Задача Фаньяно: ортотреугольник остроугольного треугольника   обладает наименьшим периметром из всех вписанных треугольников.
  • Окружность девяти точек: окружность, описанная вокруг ортотреугольника остроугольного треугольника  , проходит через середины сторон треугольника Δ  и через середины отрезков, соединяющих ортоцентр с вершинами треугольника  . Радиус этой окружности равен половине радиуса окружности, описанной вокруг треугольника Δ .
  • Высоты остроугольного треугольника являются биссектрисами углов его ортотреугольника.
  • Стороны треугольника являются тремя внешними биссектрисами его ортотреугольника, таким образом треугольник является треугольником трёх внешних биссектрис своего ортотреугольника.
  • Ортоцентр остроугольного треугольника является центром окружности, вписанной в его ортотреугольник.
  • Если точки  ,   и   на сторонах соответственно  ,   и   остроугольного треугольника Δ  таковы, что  ,   и  , то   — ортотреугольник треугольника  .
  • Ортотреугольник треугольника Δ  отсекает при вершинах  ,   и   треугольники, подобные треугольнику Δ  с коэффициентами подобия соответственно  ,  ,  .
  • Окружности, описанные вокруг отсекаемых ортотреугольником треугольников, проходят через ортоцентр, и их центры лежат на серединах отрезков, соединяющих ортоцентр исходного треугольника с вершинами исходного треугольника.
  • Если вокруг остроугольного треугольника описать окружность и в трех вершинах треугольника провести прямые, касательные к окружности, то пересечение этих прямых образует треугольник, который называют тангенциальным треугольником по отношению к исходному треугольнику, и стороны которого параллельны сторонам ортотреугольника исходного треугольника.

Свойства подобия родственных треугольников

править
 
  — ортотреугольник треугольника  , а  — треугольник Жергонна ортотреугольника.  — ортоцентр  , инцентр  и центр описанной окружности  . Треугольники   и   подобны.

Свойства параллельности (антипараллельности) сторон родственных треугольников

править
  • Стороны данного остроугольного треугольника антипараллельны соответствующим сторонам ортотреугольника, против которых они лежат.
  • Стороны тангенциального треугольника антипараллельны соответствующим противоположным сторонам данного треугольника (по свойству антипараллельности касательных к окружности).
  • Стороны тангенциального треугольника параллельны соответствующим сторонам ортотреугольника.
  • Если точки касания вписанной в данный треугольник окружности соединены отрезками, то получится треугольник Жергонна. Пусть в полученном треугольнике проведены высоты. Тогда прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника. Следовательно, ортотреугольник треугольника Жергонна и исходный треугольник подобны.

Другие свойства

править
  • Площадь ортотреугольника равна:
 

где   — площадь треугольника ΔABC;   — его соответствующие стороны.

  • Окружность, описанная около ортотреугольника Δabc, для самого треугольника ΔABC является окружностью Эйлера (окружностью 9 точек), то есть одновременно проходит, через 3 основания медиан последнего. Заметим, что эти 3 основания медиан являются вершинами дополнительного треугольника для треугольника ΔABC.
  • Радиусы окружности, описанной около данного треугольника ΔABC, проведенные через его вершины, перпендикулярны соответственным сторонам ортотреугольника Δabc (Зетель, следствие 2, § 66, с. 81).

Литература

править
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 38-39. — ISBN 5-94057-170-0.
  • Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.:Учпедгиз, 1962. 153 с.