Обсуждение:Множество
Статья «Множество» входит в общий для всех языковых разделов Википедии расширенный список необходимых статей. Её развитие вплоть до статуса избранной является важным направлением работы русского раздела Википедии. |
Проект «Математика» (уровень III, важность для проекта высшая)
Эта статья тематически связана с вики-проектом «Математика», цель которого — создание и улучшение статей по темам, связанным с математикой. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. |
Эта статья тематически связана с вики-проектом «Информационные технологии», цель которого — создание и улучшение статей по темам, связанным с информационными технологиями. Вы можете её отредактировать, а также присоединиться к проекту, принять участие в его обсуждении и поработать над требуемыми статьями. |
Согласно принятому решению, на эту страницу перенесено содержимое страницы Операции над множествами. Действие выполнено по итогам обсуждения на странице Википедия:К объединению/14 октября 2014. Список авторов интегрированных статей доступен через их историю правок. |
Вполне упорядоченное множество
правитьНе встречался с такими обозначениями для в.у.м.. Обычно в круглых скобках записывают элементы кортежей, причём вообще говоря элементы кортежа не обязаны быть вполне упорядоченными, если их несчётное число. Вы действительно имели ввиду именно в.у.м.? --Мышонок 10:55, 14 апреля 2009 (UTC)
Определение
править"Множество — совокупность каких-либо объектов, называемых его элементами, обладающих общим для всех их характеристичным свойством." - точно ли и действительно ли элементы М должны обладать "общим для всех их характеристичным свойством"??? Ведь в любое конкретное множество могут входить любые объекты (элементы), с любыми (вплоть до противоположных) свойствами: лопаты и котлеты, самолёты и танки, протоны и антипротоны - всё, что угодно.. Откуда это определение? Tpyvvikky 15:19, 20 сентября 2009 (UTC)
- Откуда не знаю, но отличие множества от случайного набора - характерный признак, параметр. Fractaler 12:26, 21 сентября 2009 (UTC)
- Так есть два (взаимоисключающих) понятия - "множество" и "случайный набор"? Как тогда, в таком случае, распознать их, по факту? Тогда должен существовать набор строгих формальных правил, по которым можно определить, является ли этот "набор" "случайным" или же нет (т.е. множеством) Tpyvvikky 12:47, 21 сентября 2009 (UTC)
- АИ, пожалуйста... --cаша (krassotkin) 14:33, 21 сентября 2009 (UTC)
- я не утверждаю, я вопрошаю. зы: а, понял - АИ для утверждения в статье Tpyvvikky 15:07, 21 сентября 2009 (UTC)
- Да, но я бы и про "случайный набор" АИ с удовольствием почитал. --cаша (krassotkin) 15:19, 21 сентября 2009 (UTC)
- я не утверждаю, я вопрошаю. зы: а, понял - АИ для утверждения в статье Tpyvvikky 15:07, 21 сентября 2009 (UTC)
- АИ, пожалуйста... --cаша (krassotkin) 14:33, 21 сентября 2009 (UTC)
Согласен. Определение крайне мутное сейчас. Однако, есть много разных определений множества, и ни одно из них не является точным по понятным причинам (кроме, конечно, аксиоматического, но не его же приводить в первом абзаце статьи). Предлагаю обсудить, какое определение лучше взять. Лично мне больше нравится определение Бертрана Расселла: «Множество суть совокупность различных элементов, мыслимая как единое целое». Как вам? Shlakoblock 17:32, 21 сентября 2009 (UTC)
- ну не такое уж и "мутное") Начало: "Множество — совокупность каких-либо объектов, называемых его элементами,.." вполне соответствует.. надо окончание. И Рассел вполне неплох (хотя и ", мыслимая как единое целое" мм.. смущает)). Хотя можно вот и "..включенных туда для проведения неких операций (действий) над ними." (в Множество обычно и объединяют для каких-либо операций, физических либо логических, вроде ни для чего более) так. Ну или даже ограничиться этим началом. Tpyvvikky 20:23, 21 сентября 2009 (UTC)
- АИ искать нужно. Формально, думаю, можно описать только алгебраически или геометрически ( числом или нарисовать). Т.е., ввести некую систему отсчёта, наблюдателя и уже относительно введённой системы делать все измерения и определения. Проблема брадобрейства таже вроде и в теории категорий рассматривается. Fractaler 18:25, 21 сентября 2009 (UTC)
Вот есть какое предложение. "Определение" в этой статье появилось недавно, большей степенью для красоты и стилистики. Что не совсем правильно для аксиоматических понятий. В аксиоматики множеств и, тем более в теории категорий тоже не так всё просто и существует множество подводных камней. Возможно имеет смысл давать не определение, а как Fractaler пишет - "описание", АИ на этот счёт достаточно. Но выбрать нужно что-то элементарное доступное и непротиворечивое, не наша задача проводить исследования. Это должно быть именно описание, потому что определение в формулировка "множество - совокупность", это тоже что "масло - суть масло"; в описании же через запятую это будет звучать нормально. А вот подраздел "Теории" имеет, видимо, смысл переделать в "История представления" (или более удачное), и вот туда можно уже включать как чисто теории (там будут и Канторовские "свойства", и аксиоматика, и категории с их классами, и алфавиты нужно включить), так и другие определения и описания, в том числе и достаточное удачное Рассела. Если согласны, можно начать с этого подраздела, а потом вернуться онтоп (если раньше не найдём что-то подходящее). Согласны? Смело правим в этом ключе?) --cаша (krassotkin) 05:50, 22 сентября 2009 (UTC)
- Всё же придерживаюсь мнения, что в преамбуле нужно дать какое-нибудь простое и понятное, но при этом не противоречивое определение понятия множества, чтобы у читателя сразу же сложилось некое представление о предмете статьи. Это, на мой взгляд, устоявшаяся практика. Предлагаю всё же в первом предложении дать определение Рассела, а далее пояснить, что это не единственное определение и уж тем более не строгое. Shlakoblock 17:43, 22 сентября 2009 (UTC)
- единственно - фраза у него в конце ".., мыслимая как единое целое." слышится как.. несколько устаревшая, что ли) Да и неконкретно-расплывчатая Tpyvvikky 18:34, 22 сентября 2009 (UTC)
- Не единственная, проблема в том, что непротиворечивого определения множества не существует, более того, о существовании непротиворечивой теории множеств мне не известно. Строго говоря, аксиоматические понятия определений не имеют по определению). Поэтому правильно начинать статью о них так - Прямая, далее описывать внешние признаки и давать характеристику и только глубже, в соответствующих разделах давать историю представления и развитие теорий. Есть принципиальная разница между определением и другими способами ввода понятия: определение должно перечислить необходимые и достаточные признаки дефидента для отличия его от сходных с ним предметов, а такового относительно множества нет; с другой стороны, например, описание должно всего лишь перечислить отличительные внешние признаки, способствующие выделению предмета среди остальных, а этого полно. Есть ещё другие способы ввода, например, демонстрация, или характеристика и т.д. Неспециалист не увидит разницы, а для математика (основного читателя этой статьи) и логика ничего не будет резать взгляд и слух - никто не будет требовать АИ. Кстати, высказывание Рассела ничего общего с определением не имеет, но весьма полезно для прочтения в подразделе "История представления", или "Попытки определения и описания". --cаша (krassotkin) 18:55, 22 сентября 2009 (UTC)
- гм, это какого же это "математика и логика, основного читателя этой статьи"?? (уж этим-то, наоборот, эта статейка вообще нх не нужна, они-то уж более серьезные книги читают). Статья должна быть понятна (и интересна) ВСЕМ и каждому, кто заглянет сюда узнать "а что же всё-таки это такое?". А ВСЕМ любопытно знать ЧТО это такое ("Множество — совокупность каких-либо объектов, называемых его элементами," вполне достаточно) и ДЛЯ чего это, соппстно, нужно (ну и привести примеры этого-самого конечно, да), и это собстно относится ко всем статьям. PS: и далее определения он пойдет вряд ли и вряд ли станет углубляться в подробности и тонкости (и в принципе не обязан), знаю по себе. /"вся сила в Определении, брат.."/
- Странный у нас диалог получается. Нет, говорю, определения, а Вы настаиваете - надо, брат). Придумать что ли? Последних тысячи лет математики думали-думали не придумали, а нам всё равно - сядем и напишем. Мы, конечно, все очень умные, но, извините, не оригинальными исследованиями и их защитой в Википедии занимаемся, а пересказом существующего положения вещей. А существующее положение таково, что вначале книжек о множествах пишут, что определения нет, потом дают одно-два описания, а далее переходят к практике. Если же Вы найдёте АИ в которых написано по-другому, обязательно включим их в "другие мнения", т. к. большинства на их стороне всёравно не окажется. Т.е. или АИ или удаляем это "определение", а так разговор превращается в переливание в пустотах. --cаша (krassotkin) 19:16, 23 сентября 2009 (UTC)
- так как это не назови ("потом дают одно-два описания, а далее..") так это всё одно — Определение-)), всё одно наверху) (ну а так — пишите что хотите, мне-то что. я просто высказал своё мнение;) Tpyvvikky 20:53, 23 сентября 2009 (UTC)
- Понял, мы говорим об одном и том же. Значит можно править в этом ключе. А называть нужно вещи своим именами, нас же читать будут. Вам за мнение спасибо, именно благодаря Вам эта дискуссия появилась, и именно Вы обратили внимание на абсурд в главных формулировках этой статьи. --cаша (krassotkin) 04:42, 24 сентября 2009 (UTC)
- так как это не назови ("потом дают одно-два описания, а далее..") так это всё одно — Определение-)), всё одно наверху) (ну а так — пишите что хотите, мне-то что. я просто высказал своё мнение;) Tpyvvikky 20:53, 23 сентября 2009 (UTC)
- Странный у нас диалог получается. Нет, говорю, определения, а Вы настаиваете - надо, брат). Придумать что ли? Последних тысячи лет математики думали-думали не придумали, а нам всё равно - сядем и напишем. Мы, конечно, все очень умные, но, извините, не оригинальными исследованиями и их защитой в Википедии занимаемся, а пересказом существующего положения вещей. А существующее положение таково, что вначале книжек о множествах пишут, что определения нет, потом дают одно-два описания, а далее переходят к практике. Если же Вы найдёте АИ в которых написано по-другому, обязательно включим их в "другие мнения", т. к. большинства на их стороне всёравно не окажется. Т.е. или АИ или удаляем это "определение", а так разговор превращается в переливание в пустотах. --cаша (krassotkin) 19:16, 23 сентября 2009 (UTC)
- гм, это какого же это "математика и логика, основного читателя этой статьи"?? (уж этим-то, наоборот, эта статейка вообще нх не нужна, они-то уж более серьезные книги читают). Статья должна быть понятна (и интересна) ВСЕМ и каждому, кто заглянет сюда узнать "а что же всё-таки это такое?". А ВСЕМ любопытно знать ЧТО это такое ("Множество — совокупность каких-либо объектов, называемых его элементами," вполне достаточно) и ДЛЯ чего это, соппстно, нужно (ну и привести примеры этого-самого конечно, да), и это собстно относится ко всем статьям. PS: и далее определения он пойдет вряд ли и вряд ли станет углубляться в подробности и тонкости (и в принципе не обязан), знаю по себе. /"вся сила в Определении, брат.."/
- Не единственная, проблема в том, что непротиворечивого определения множества не существует, более того, о существовании непротиворечивой теории множеств мне не известно. Строго говоря, аксиоматические понятия определений не имеют по определению). Поэтому правильно начинать статью о них так - Прямая, далее описывать внешние признаки и давать характеристику и только глубже, в соответствующих разделах давать историю представления и развитие теорий. Есть принципиальная разница между определением и другими способами ввода понятия: определение должно перечислить необходимые и достаточные признаки дефидента для отличия его от сходных с ним предметов, а такового относительно множества нет; с другой стороны, например, описание должно всего лишь перечислить отличительные внешние признаки, способствующие выделению предмета среди остальных, а этого полно. Есть ещё другие способы ввода, например, демонстрация, или характеристика и т.д. Неспециалист не увидит разницы, а для математика (основного читателя этой статьи) и логика ничего не будет резать взгляд и слух - никто не будет требовать АИ. Кстати, высказывание Рассела ничего общего с определением не имеет, но весьма полезно для прочтения в подразделе "История представления", или "Попытки определения и описания". --cаша (krassotkin) 18:55, 22 сентября 2009 (UTC)
- единственно - фраза у него в конце ".., мыслимая как единое целое." слышится как.. несколько устаревшая, что ли) Да и неконкретно-расплывчатая Tpyvvikky 18:34, 22 сентября 2009 (UTC)
- Конечно, чтоб не отпугнуть большинство читателей Википедии, имеет смысл в преамбулах статей давать определение с терминологией этого большинства (т.е., на понятном ему языке). Имеет смысл показать, что проблема определения существует и у других базовых, основополагающих терминов (напр., точка (геометрия)). Затронуть теоремы Гёделя о неполноте, брадобрейства и их геометрический образ (невозможности причесать волосатый шар). Раз термин Множества является базовым, фигурирующим в других определениях, то можно также указать список (не знаю, делал ли кто-нибудь) всех множеств (на сегодняшний день) как способ задания понятия Множество (перечислением, а не определением - как в биологии, чтоб обойти проблемы с определением Живое). Думаю, со временем, Википедия могла бы такой список (своих категорий) предоставить Fractaler 11:50, 23 сентября 2009 (UTC)
неверно, что алфавит - синоним множестваGnivic 15:28, 30 января 2012 (UTC)
В результате так никакого определения в шапке толком и не дали, только написали что определение сложно дать... не в этом суть вики Gendalv 16:38, 9 января 2016 (UTC)
Mylania⁽^-^⁾ (T, C) 08:59, 11 июня 2021 (UTC)
Более того, в определении очень важно было подчеркнуть не то, какими должны быть элементы множества (потому, что это не просто объяснить, и потому, что элементы множества на самом деле могут быть произвольными — даже множествами), а само основное отличительное свойство множества (о котором до моей версии можно было узнать только из раздела «Элемент множества» и которое я оттуда, по сути, перенесла). А заключается оно вот в чём: смысл множества не изменяется от перемены элементов местами и от добавления одних и тех же.
vs
правитьНасколько я могу судить, в современной нотации всё чаще видится тенденция к тому, чтобы использовать в качестве обозначения для нестрогого включения, а для строгого — соответственно , в котором это отдельно выделяется. Может и здесь стоит исправить? С одной стороны, потеряется аналогия с и , но с другой — так ли это важно? adamant (обс./вклад) 13:23, 26 октября 2019 (UTC)
- @Adamant.pwn:, вообще намного лучше нестрогое включение обозначить как а строгое — как а символа по возможности избегать, чтобы не мучить читателя :'(. Это некий компромисс между:
- парой которой одни авторы хотят подчеркнуть сходство с
- и между парой где другие авторы хотят показать, что нестрогое включение, как и нестрогое неравенство, — это более естественное и фундаментальное соотношение: оно естественным образом возникает, например, в определении булеана:
или - Я даже обсуждение по этому поводу создала.^^
- Mylania⁽^-^⁾ (T, C) 06:29, 11 июня 2021 (UTC)
Симметричная разность
правитьКак лучше обозначать симметричную разность: через обычный треугольник (\bigtirangleup) или заглавную дельта (\Delta)? JamTypeX (обс.) 12:37, 3 марта 2022 (UTC)
- Извиняюсь, симметрическая разность. JamTypeX (обс.) 12:40, 3 марта 2022 (UTC)
- \bigtriangleup, для инфиксов по возможности лучше использовать символ, а не букву, bezik° 01:23, 4 марта 2022 (UTC)