Многообразие Гизекинга — трёхмерное гиперболическое многообразие наименьшего объёма.

Построение

править

Многообразие Гизекинга можно построить путём склеивания двух пар граней идеального равноугольного гиперболического тетраэдра (с двугранными углами  ). Если пронумеровать вершины 0, 1, 2, 3, то грань 0,1,2 надо склеить с гранью 3,1,0 и грань 0,2,3 надо склеить с гранью 3,2,1; в обоих случаях требуется сохранять порядок вершин.

Свойства

править
 
Узел «Восьмёрка»
  • Многообразие Гизекинга имеет наименьший объём среди всех гиперболических многообразий.
    • Его объём равен объёму правильного идеального гиперболического тетраэдра, он приблизительно равен 1.01494161.
  • Первые гомологии многообразия Гизекинга это целые числа.
  • Многообразие Гизекинга расслаивается над окружностью с проколотым тором как слой; монодромия задаётся отображением  .

Ссылки

править
  • Gieseking, H. (1912), Analytische Untersuchungen über Topologische Gruppen, Thesis, Muenster, JFM 43.0202.03
  • Adams, Colin C. (1987), "The noncompact hyperbolic 3-manifold of minimal volume", Proceedings of the American Mathematical Society, 100 (4): 601—606, doi:10.2307/2046691, ISSN 0002-9939, MR 0894423