Ла́зерное ускоре́ние ио́нов — процесс ускорения ионного пучка с помощью сверхсильного лазерного излучения. Обычно процесс ускорения производится при облучении твердотельной мишени, однако существуют схемы ускорения ионов и в газовых мишенях. Наиболее перспективными считаются схемы ускорения приповерхностным слоем нагретых электронов и световым давлением. При помощи лазерного излучения были получены ионы с энергиями до 55 МэВ.

Ускорение приповерхностным слоем нагретых электронов

править

Впервые ионы, ускоренные лазерным излучением, наблюдались экспериментально в 1999 году на лазерной установке Nova в Ливерморской национальной лаборатории. При облучении твердотельной мишени лазерным импульсом интенсивностью 1020 Вт/см² с обратной стороны мишени наблюдалась генерация энергичных ионов, имеющих квазитепловой разброс по энергиям с максимальной энергией около 55 МэВ[1].

Это явление было объяснено механизмом так называемого ускорения приповерхностным слоем нагретых электронов. Его суть заключается в том, что лазерный импульс при взаимодействии с мишенью ионизирует её вещество с образованием плазмы высокой плотности. При этом происходит разогрев электронов образовавшейся плазмы до релятивистских температур, сопровождающийся разлётом образовавшегося облака электронов далеко за пределы мишени. Разлёт приводит к появлению электростатического поля разделения зарядов, которое в свою очередь ускоряет ионы.

Для получения квазимоноэнергетических спектров ускоренных ионов было предложено использование композитных мишеней, представляющих собой тонкие фольги из тяжёлого металла (золота, платины и т. п.) с нанесённым на поверхность ультратонким слоем лёгких атомов — водорода или углерода. В процессе взаимодействия тяжёлые ионы остаются практически неподвижными, в то время как более лёгкие эффективно ускоряются, образуя пучок ионов приблизительно равной энергии.

Ускорение световым давлением

править

Альтернативной схемой ускорения является ускорение световым давлением[2]. Её идея заключается в том, что при облучении сверхтонкой (порядка 10 нм) фольги, состоящей из лёгких элементов (например, водорода и/или углерода), световое давление, оказываемое сфокусированными лазерными импульсами мощностью более 10 ТВт, может оказаться достаточным для эффективного ускорения мишени как целого. Данный метод, предложенный в 2004 году[3], был реализован экспериментально только в 2009 году. В эксперименте, проведённом в Институте Макса Борна, использовался лазерный импульс мощностью 20 ТВт с высоким контрастом, облучавший углеродные плёнки, толщина которых варьировалась от 2,9 нм до 40 нм. Оптимальный результат получился для плёнки толщиной 5,3 нм: были зарегистрированы шестизарядные ионы углерода, имевшие энергию около 30 МэВ[4].

См. также

править

Примечания

править
  1. S. P. Hatchett et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets (англ.) // Phys. Plasmas. — 2000. — Vol. 7. — P. 2076.
  2. Andrea Macchi. Theory of light sail acceleration by intense lasers: an overview (англ.) // High Power Laser Science and Engineering. — 2014. — Vol. 2. — P. e10. — doi:10.1017/hpl.2014.13. — arXiv:1403.6273. Архивировано 9 января 2015 года.
  3. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima. Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime (англ.) // Phys. Rev. Lett.. — 2004. — Vol. 92. — P. 175003.
  4. A. Henig et al. Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses (англ.) // Phys. Rev. Lett.. — 2009. — Vol. 103. — P. 245003.

Литература

править

Научная

править

Научно-популярная

править