Космическая скорость

Косми́ческие ско́рости (первая v1, вторая v2, третья v3 и четвёртая v4[1]) — характерные критические скорости движения космических объектов в гравитационных полях небесных тел и их систем. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.

Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос.

По определению, космическая скорость — это минимальная начальная скорость, которую необходимо придать объекту (например, космическому аппарату, далее КА) на поверхности небесного тела в отсутствие атмосферы, чтобы:

  • v1 — объект стал искусственным спутником центрального тела, то есть стал вращаться по круговой орбите вокруг него на нулевой или пренебрежимо малой высоте относительно поверхности;
  • v2 — объект преодолел гравитационное притяжение центрального тела и начал двигаться по параболической орбите, получив тем самым возможность удалиться на бесконечно большое расстояние от него;
  • v3 — объект покинул планетную систему, преодолев притяжение планеты и звезды;
  • v4 — объект покинул галактику.

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.

Первая космическая скорость

править

Квадрат круговой (первой космической) скорости с точностью до знака равен ньютоновскому потенциалу Φ на поверхности небесного тела (при выборе нулевого потенциала на бесконечности):

 

где M — масса небесного тела, R — его радиус, G — гравитационная постоянная.

Если скорость КА или другого объекта в момент вывода на орбиту превышает круговую, его орбитой будет эллипс с фокусом в центре притяжения.

Вторая космическая скорость

править

Между первой и второй космическими скоростями в нерелятивистском случае существует простое соотношение:

 

Квадрат скорости убегания (второй космической скорости) равен удвоенному ньютоновскому потенциалу на поверхности тела, взятому с обратным знаком:

 

Вторая космическая скорость (параболическая скорость, скорость убегания) обычно определяется в предположении отсутствия каких-либо других небесных тел. Например, для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Первая и вторая космические скорости для различных небесных тел

править
Небесное тело Масса (по отношению к массе Земли)[2] v1, км/с[3] v2, км/с[4]
Энцелад 1,8×10−5[5] 0,169 0,239[6]
Церера 1,57×10−4[7] 0,37 0,52[6]
Луна 0,0123 1,678 2,4
Меркурий 0,0553 3,005 4,3
Венера 0,815 7,325 10,4
Земля 1 7,91 11,2
Марс 0,107 3,546 5,0
Юпитер 317,8 42,58 59,5
Сатурн 95,2 25,535 35,5
Уран 14,54 15,121 21,3
Нептун 17,1 16,666 23,5
Солнце 332 940 437,047 618,1[6]
Белый карлик Сириус B 338 933 4 800 6 800[6]
Нейтронная звезда PSR J0348+0432[англ.] ок. 670 000 143 000 ± 10 000[8] ~ 200 000[8][6]

Третья космическая скорость

править

КА, начальная скорость которого не меньше третьей космической скорости, в состоянии преодолеть притяжение Солнца и навсегда покинуть пределы Солнечной системы.

Четвёртая космическая скорость

править

Четвёртая космическая скорость — минимально необходимая скорость тела, позволяющая преодолеть притяжение галактики в данной точке. Четвёртая космическая скорость используется довольно редко. Ни один искусственный объект пока не развивал такой скорости.

См. также

править

Примечания

править
  1. Засов А. В., Сурдин В. Г. Космические скорости. Архивная копия от 15 июня 2013 на Wayback Machine
  2. Dr. David R. Williams. Planetary Fact Sheet - Ratio to Earth Values (англ.). NASA. Дата обращения: 16 ноября 2017. Архивировано 11 мая 2018 года.
  3. Первая космическая скорость, онлайн расчет. Калькулятор – справочный портал. Дата обращения: 26 июля 2019. Архивировано 13 мая 2019 года.
  4. Dr. David R. Williams. Planetary Fact Sheet - Metric (англ.). NASA. Дата обращения: 16 ноября 2017. Архивировано 20 августа 2011 года.
  5. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E. et al. The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data (англ.) // The Astronomical Journal : journal. — IOP Publishing, 2006. — December (vol. 132). — P. 2520—2526. — doi:10.1086/508812.
  6. 1 2 3 4 5 Вторая космическая скорость, онлайн расчет. Калькулятор – справочный портал. Дата обращения: 28 июля 2019. Архивировано 13 мая 2019 года.
  7. Carry, Benoit; et al. Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres (англ.) // Astronomy and Astrophysics : journal. — EDP Sciences, 2008. — January (vol. 478, no. 1). — P. 235—244. — doi:10.1051/0004-6361:20078166. Архивировано 10 августа 2020 года.
  8. 1 2 Строго говоря, при расчёте должны учитываться релятивистские поправки, однако гораздо большую неточность вносит имеющая место на сегодняшний день неопределённость значения радиуса нейтронной звезды

Литература

править
  • Ширмин Г. И. Космические скорости. — 2016. — Кн. Большая российская энциклопедия. Электронная версия.
  • Ю. А. Рябов. [bse.sci-lib.com/article065144.html Космические скорости]. — Кн. Большая Советская Энциклопедия (БСЭ).
  • Космические скорости / Гл. ред. А. М. Прохоров. — Москва : Советская энциклопедия, 1988. — Кн. Физическая энциклопедия. В 5-ти томах.