Конхоида Никомедаконхоида прямой, то есть кривая, получающаяся увеличением (вторая ветвь — уменьшением) радиус-вектора точек прямой на некую постоянную величину ; плоская алгебраическая кривая 4-го порядка. Конхоида имеет две ветви, сама прямая конхоиды является асимптотой обеих ветвей.

Три конхоиды прямой с общим красным центром, красная , зелёная и синяя

Название происходит от др.-греч. κογχοειδής — «похожий на раковину»[1].

Построение

править
 
Построение конхоиды Никомеда

Пусть на плоскости выбрана прямая m и точка O, отстоящая от прямой на расстояние a. Проведём через точку O луч, пересекающий прямую m в некоторой точке N; точки M1 и M2, лежащие на луче ON и отстоящие от точки N на заранее выбранное расстояние l, будут точками конхоиды. Меняя направление луча ON, можно построить всю конхоиду[1].


Уравнения

править

Декартовы координаты

править

Если центр конхоиды помещён в начале координат, а прямая задана уравнением   в декартовых прямоугольных координатах, то уравнение конхоиды имеет вид

 

Начало координат является двойной точкой, характер которой зависит от величин   и  :

Полярные координаты

править

В полярных координатах, если начало координат находится на расстоянии   от прямой, которая смещается вдоль радиус-вектора на расстояние  , уравнение конхоиды имеет вид[1]

 

История

править

Кривая названа по имени Никомеда (III—II века до н. э.), который применял её для решения задачи о трисекции угла и удвоения куба[1].

Примечания

править

Литература

править
  • Прасолов В. В.. Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга. М.: Наука, 1992. 80 с. Серия «Популярные лекции по математике», выпуск 62.
  • Савёлов А. А. Плоские кривые. Физматгиз, 1960.
  • Конхоида // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 150-151. — 352 с.