Мотив (молекулярная биология)

(перенаправлено с «Консервативные мотивы»)

Моти́в в молекулярной биологии — относительно короткая последовательность нуклеотидов или аминокислот, слабо меняющаяся в процессе эволюции и, по крайней мере предположительно, имеющая определённую биологическую функцию[1][2][3]. Под мотивом иногда подразумевают не конкретную последовательность, а каким-либо образом описанный спектр последовательностей, каждая из которых способна выполнять определённую биологическую функцию данного мотива[4].

Мотивы встречаются в живых организмах повсеместно и выполняют множество жизненно важных функций, таких как регуляция транскрипции и трансляции (в случае нуклеотидных мотивов), посттрансляционная модификация и клеточная локализация белков, и частично обуславливают их функциональные свойства (лейциновая молния)[2][5]. Они широко используются в биоинформатике для предсказания функций генов и белков, построения карт регуляции, важны для многих задач генной инженерии и молекулярной биологии в целом[6][7][8].

В связи с практической важностью мотивов, разработаны как биоинформатические методы их поиска (MEME, Gibbs Sampler), так и методы поиска мотивов in vivo (ChIP-seq, ChIP-exo). Последние довольно часто дают приблизительные координаты мотивов и их результаты затем уточняются биоинформатическими методами[1][2][6].Для удобства хранения мотивов в базах данных используются их разные, отличающееся степенью детальности, представления, наиболее распространенными из которых являются консенсус и позиционная весовая матрица[2].

Следует отличать мотив от консервативных участков в близкородственных организмах, необладающих значимыми биологическими функциями, где мутационный процесс не успел ещё достаточно их изменить[9].

Мотивы в нуклеиновых кислотах

править

В случае с ДНК чаще всего мотивы представляют собой короткие последовательности, являющиеся сайтами связывания для белков, таких, как нуклеазы и транскрипционные факторы, или вовлечённые в важные регуляторные процессы уже на уровне РНК, такие как посадка рибосомы, процессинг мРНК и терминация транскрипции[4].

Краткая история изучения

править

Изучение мотивов в ДНК стало возможным благодаря появлению в 1973 году[10] процедуры секвенирования ДНК (определения последовательности нуклеотидов фрагмента ДНК). Первыми были определены последовательности lac-оператора и лямбда-оператора[11]. Однако до появления более производительных методов секвенирования[12], количество последовательностей мотивов оставалось достаточно малым. К концу 1970-х годов появилось множество примеров мутантных последовательностей (сайтов), связывающих транскрипционные факторы и последовательностей с изменённой специфичностью[13]. С увеличением количества последовательностей, стали развиваться и методы теоретического предсказания мотивов. В 1982 году была впервые сконструирована позиционно-весовая матрица (ПВМ) мотива сайта инициации трансляции. С помощью построенной ПВМ были предсказаны другие сайты инициации трансляции[14]. Этот подход оказался достаточно мощным и до сих пор в разных формах применяется для поиска известных мотивов в геномах, а конкретные методы различаются только видом весовой функции[4]. Однако подход, основанный на построении ПВМ на базе уже имеющихся последовательностей, не позволял находить принципиально новые мотивы, что является более сложной задачей. Первый алгоритм, решавший эту задачу, был предложен Галласом с коллегами в 1985 году[15]. Этот алгоритм был основан на поиске общих слов в наборе последовательностей и давал большой процент ложноотрицательных результатов, однако он стал основой для целого семейства алгоритмов[16]. Позднее были разработаны более точные вероятностные методы: алгоритм MEME, основанный на процедуре максимизации ожидания[17] и алгоритм Gibbs Sampler, также основанный на процедуре максимизации ожидания[18]. Оба метода оказались очень чувствительными и используются в настоящее время для предсказания мотивов в наборах последовательностей.

После разработки мощных средств для предсказания мотивов связывания транскрипционных факторов и установления соответствия между достаточным количеством транскрипционных факторов и мотивов, стало возможным предсказывать функции оперона, лежащего поблизости от мотива по специфичности транскрипционного фактора, с ним связывающегося и наоборот, предсказывать транскрипционный фактор по генам в опероне, лежащем рядом с определённым мотивом[3].

Сайты связывания

править

Регуляция транскрипции

править

Характерными примерами регуляции транскрипции, осуществляемой с помощью белка, распознающего специальный мотив, являются:

  1. Сайт пуринового репрессора PurR у Escherichia coli. PurR связывается с последовательностью в 16 нуклеотидов, которая расположена перед пуриновым опероном и регулирует транскрипцию генов, ответственных за синтез пуриновых и пиримидиновых нуклеотидов[5][19]. Интересно, что у бактерии Bacillus subtilis, эволюционно далёкой от кишечной палочки, также есть пуриновый репрессор, не гомологичный PurR[20];
  2. Сайт лактозного оперона Lac. Лактозный оперон контролируется репрессором LacI, который, связывая ДНК, препятствует транскрипции генов, ответственных за катаболизм лактозы[6].
Регуляция трансляции
править

Одними из наиболее известных примеров регуляции трансляции при помощи мотив-распознающих регуляторов являются:

  1. Сайт посадки рибосомы прокариот — последовательность Шайн — Дальгарно[21], здесь связывание происходит с рибопротеином;
  2. Сайт посадки рибосомы эукариот — последовательность Козак, связывание происходит с эукариотическим фактором инициации трансляции eIF1[7];
  3. IRE — регуляторные элементы, располагающиеся на 5’UTR и/или 3’UTR мРНК ферментов (к примеру, ферритина), регулирующие содержание железа в клетке. С этими мотивами связываются белки IRP1 (цитозольная форма аконитазы) и IRP2 (каталитически неактивный гомолог аконитазы), регулируя самим фактом своего связывания с мРНК скорость её деградации или скорость трансляции, происходящей с неё[22].
Сила мотива
править

Сила взаимодействия белка или РНК с ДНК мотивом зависит в первую очередь от последовательности данного мотива. Различают «сильные» мотивы, дающие сильное взаимодействие с белком или РНК и «слабые» мотивы, с которыми взаимодействие слабее. Практически всегда удаётся получить так называемую «консенсусную последовательность» («консенсус»), то есть такую последовательность, в каждой позиции которой стоит буква, наиболее часто встречающаяся в соответствующей позиции в последовательностях мотивов из разных организмов. Консенсусная последовательность принимается за самую сильную, каковой она почти всегда и является[23]. Более слабые мотивы получаются из неё с помощью небольшого (чаще всего 1—3) числа замен[24].

Эволюция силы мотива

править

В процессе эволюции сила мотивов регулируется с помощью естественного отбора, причём мотив может становиться как сильнее, так и слабее[25]. Характерным примером такой подстройки силы мотива может служить изменчивость последовательности Шайна — Дальгарно (ШД). Есть тесная корреляция между необходимым организму количеством транслируемого белка и силой ШД перед ним[8].

В случае с ШД, хотя сила связывания белка и напрямую коррелирует с силой связывания 16S-субъединицы рибосомы, в связи с особенностями инициации трансляции, консенсусная последовательность не обязательно будет гарантировать наиболее эффективную трансляцию (из-за затруднённого ухода рибосомы с сайта инициации)[6]. Поэтому последовательность Шайна — Дальгарно чаще всего содержит 4—5 нуклеотидов из консенсусной последовательности при длине последней примерно в 7 нуклеотидов[26].

РНК-переключатели

править

Не всегда наличие мотива, явно выполняющего биологически значимую роль, влечёт за собой наличие белка-регулятора. Регуляция также может осуществляться за счёт связывания РНК с каким-либо низкомолекулярным веществом. На этом принципе построены РНК-переключатели — структуры, образующиеся на РНК во время транскрипции, способные связывать малые молекулы[27][28]. Связывание молекулы влияет на способность рибопереключателя останавливать транскрипцию или препятствовать трансляции. В этом случае важной оказывается не последовательность нуклеотидов как таковая, а наличие комплементарных нуклеотидов на нужных местах в последовательности[4].

Регуляция за счёт вторичной структуры

править

Регуляция трансляции также может осуществляться только за счёт образуемой нуклеиновой кислотой вторичной структуры.

  1. Ро-независимый терминатор транскрипции — шпилька, образующаяся на синтезируемой мРНК до начала трансляции, препятствующая дальнейшему синтезу мРНК (Терминатор (ДНК))[29];
  2. IRES — сложная структура в мРНК вирусов эукариот, обеспечивающий внутреннюю инициацию трансляции[30].

Структура мотива

править

Зачастую, мотивы, связывающие транскрипционные факторы, имеют вид прямых повторов некоторой последовательности, обратных повторов или палиндромных последовательностей. Это можно объяснить работой транскрипционных факторов в виде димеров белков, в которых каждый из мономеров связывает одну и ту же последовательность. Встречаются также мотивы большей повторности[6]. Такое строение мотивов обеспечивает большую резкость реакции на изменение внешних условий. К примеру, если связывание зависит от концентрации одного вещества в клетке, то получаем зависимость силы реакции клетки, описываемую уравнением Михаэлиса — Ментен. С увеличением числа связывающихся единиц белка (будем считать, что действие связывания белка с мотивом проявляется только в случае связывания со всеми повторами) зависимость всё больше становится похожей на сигмоиду, в пределе стремясь к функции Хевисайда, описывающей один из главных принципов реагирования живых систем на многие воздействия — закон «всё или ничего» (англ. all-or-nothing law)[6], к примеру, формирования потенциала действия[31].

Мотивы в белках

править

Для белков следует различать

Мотивы в первичной структуре (последовательности белка)

править

Мотивы в первичной структуре похожи на мотивы в нуклеиновых кислотах. Характерными примерами таковых являются:

  1. сигнальные пептиды — короткие аминокислотные последовательности в составе белка длиной порядка 3—60 аминокислот[33], определяющие, в какой компартмент клетки будет отправлен после синтеза. Пример — сигнал ядерной локализации;
  2. сайты посттрансляционной модификации белков, представляющие собой консервативные пептиды порядка 5—12 аминокислот[6]. Пример — сайты ацетилирования в белке[34]

Структурные мотивы

править

В белках структурные мотивы описывают связи между элементами вторичной структуры. Такие мотивы часто имеют участки переменной длины, которые в некоторых случаях могут и вовсе отсутствовать[22].

  1. Лейциновая молния — характерен для димерных белков, связывающих ДНК. Лейциновая молния обеспечивает контакт двух мономеров белка за счёт гидрофобных взаимодействий[22][35]. Для него характерно наличие в каждой седьмой позиции остатка лейцина.
  2. Цинковые пальцы — характерен для ДНК-связывающих факторов транскрипции[22][36];
  3. Спираль-поворот-спираль — ДНК-связывающий мотив, именно такой ДНК-связывающий фрагмент у Lac-репрессора[22].
  4. Гомеодомен — мотив, связывающий ДНК и РНК. У эукариот белки с гомеодоменами индуцируют дифференцировку клеток, запуская каскады генов, необходимых для образования тканей и органов. Похож на мотив «спираль-поворот-спираль», потому часто отдельно не выделяется[22][37].
  5. Укладка Россмана — мотив, связывающий нуклеотиды (к примеру — НАД)[38]. Встречается, в частности, в дегидрогеназах, в том числе в глицеральдегид-3-фосфатдегидрогеназе, участвующей в гликолизе.
  6. EF-рука — мотив, связывающий ионы Са2+, также подобен мотиву «спираль-поворот-спираль»[39].
  7. Гнездо — три последовательных аминокислотных остатка формируют сайт связывания аниона[40].
  8. Ниша — три последовательных аминокислотных остатка формируют сайт связывания катиона[41].
  9. Бета-шпилька — два β-тяжа, соединённых коротким разворотом цепи белка[42].

Кроме бета-шпильки выделяют и множество других мотивов, функция которых состоит в формировании структурного каркаса белка[43].

Близким к термину структурный мотив белка является укладка — характерное расположение элементов вторичной структуры. В силу своей схожести термины часто используются один вместо другого и грань между ними размыта[43][44].

Представление мотивов

править

Изначально имеется набор мотивов из разных последовательностей и ставится задача[2]:

  • представить их компактно и наглядно;
  • уметь по представлению мотива осуществлять поиск его новых вхождений.

Существует несколько общепризнанных способов представления мотивов[45]. Часть из них подходит как для белков, так и для нуклеотидов, другая часть — только для белков или нуклеотидов.

Консенсус

править

Строгий консенсус

править

Строгим консенсусом мотива назовем строчку, состоящую из самых представленных букв в множестве реализаций мотива. На практике, указывается не просто наиболее частая буква в данной позиции, но и, если максимальная частота встречаемости какой-либо буквы в данной позиции меньше заданного порога, то на этом месте в консенсусе ставится x (любая буква алфавита). По такому консенсусу мы почти наверняка находим последовательности, реально являющиеся мотивами, но упускаем большое число мотивов, отличающихся от консенсуса на несколько замен[2][4][9]. Ниже приведён пример строгого консенсуса для участка мотива пяти взятых из UniProt белков с мотивом лейциновой молнии (порог был взят равным 80 %):

Номер позиции
UniProt ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
O35048 L S P C G L R L I G A H P I L
Q6XXX9 L G Q D I C D L F I A L D V L
Q9N298 L G Q V T C D L F I A L D V L
Q61247 L S P L S V A L A L S H L A L
B0BC06 L T I G Q Y S L Y A I D G T L
Консенсус L x x x x x x L x x x x x x L

Нестрогий консенсус

править

Нестрогим консенсусом назовем последовательность списков букв, наиболее представленных на соответствующем месте. Описываются все или наиболее часто встречающиеся буквы в данной позиции (обычно устанавливается минимальный порог частоты)[2]. Фактически, мотив описывается при помощи регулярного выражения[4][9]. В качестве обозначений используют:

  • Алфавит — совокупность отдельных символов, обозначающих определённую аминокислоту/нуклеотид или набор аминокислот/нуклеотидов;
  • ABC — строка из символов алфавита, обозначающая последовательность символов, следующих друг за другом;
  • [ABC] — любая строка символов, взятых из алфавита в квадратных скобках соответствует любому из соответствующих символов; например [ABC] соответствует или A или B или C;
  • {ABC..DE} — любая строка символов, взятых из алфавита, соответствует любой аминокислоте, кроме тех, что находятся в фигурных скобках; например {ABC} соответствует любой аминокислоте, кроме A, B и C;
  • x в нижнем регистре — любой символ алфавита.

В случае с таким представлением приходится балансировать между чувствительностью консенсуса (количеством реальных мотивов, которые им получится отыскать) и специфичностью (способностью метода отбраковывать мусорные последовательности)[1]. Ниже приведен пример нестрого консенсуса для тех же пяти последовательностей белков, что и для строго консенсуса (порог был взят равным 20 %). Видим, что в позиции 10 мотив не совсем объективен — лейцин (L) и изолейцин (I) — очень близкие по свойствам аминокислоты, и логично было бы их обе занести в консенсус.

Номер позиции
UniProt ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
O35048 L S P C G L R L I G A H P I L
Q6XXX9 L G Q D I C D L F I A L D V L
Q9N298 L G Q V T C D L F I A L D V L
Q61247 L S P L S V A L A L S H L A L
B0BC06 L T I G Q Y S L Y A I D G T L
Консенсус L [SG] [PQ] x x C D L F I A [LH] D V L

Prosite-консенсус (для белков)

править

PROSITE использует ИЮПАК для обозначения однобуквенных кодов аминокислот, за исключением символа конкатенации «-», используемого между элементами паттерна. При использовании PROSITE добавляется несколько символов, облегчающих представление белкового мотива[46]:

  • '<' — шаблон ограничивается N-концом последовательности;
  • '>' — шаблон ограничивается C-концом последовательности;

Если e — шаблон элемента, и m и n два десятичных целых числа и m <= n, то:

  • e(m) эквивалентно повторению e ровно m раз;
  • e(m,n) эквивалентно повторению e ровно k раз для любого целого k удовлетворяющего условию: m <= k <= n;

Пример: мотив домена с сигнатурой C2H2-type цинкового пальца выглядит следующим образом: C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H[47]

Позиционная весовая матрица

править

Позиционной весовой матрицей называется такая матрица, столбцы которой соответствуют позиции в последовательности, а строчки соответствуют буквам в алфавите. Значениями этой матрицы являются частоты (или монотонные функции от частот) встречаемости данной буквы в данной позиции на последовательности. При этом обычно, чтобы исключить нулевые частоты к числу встреч каждой буквы позиции добавляют некоторое число, исходя из априорного распределения букв в подобных последовательностях[4] (к примеру, вводят поправку Лапласа[48]). Данный подход, как и предыдущие, неявно предполагает, что позиции в мотиве независимы, чего на самом деле не наблюдается даже для нуклеотидных последовательностей[2][4].

Пусть у нас есть 7 последовательностей ДНК, представляющих собой мотив[9]:

Номер позиции
Номер

последовательности

1 2 3 4 5 6 7 8
1 A T C C A G C T
2 G G G C A A C T
3 A T G G A T C T
4 A A G C A A C C
5 T T G G A A C T
6 A T G C C A T T
7 A T G G C A C T

Позиционная матрица для них будет иметь следующий вид (+1 — учёт правила Лапласа)[9]:

Номер позиции
Нуклеотид 1 2 3 4 5 6 7 8
A 5 + 1 1 + 1 0 + 1 0 + 1 5 + 1 5 + 1 0 + 1 0 + 1
C 1 + 1 0 + 1 1 + 1 4 + 1 2 + 1 0 + 1 6 + 1 1 + 1
G 0 + 1 1 + 1 6 + 1 3 + 1 0 + 1 1 + 1 0 + 1 0 + 1
T 1 + 1 5 + 1 0 + 1 0 + 1 0 + 1 1 + 1 1 + 1 6 + 1

Частоты можно пронормировать на общее число последовательность, тем самым получив оценку вероятности встречи данного нуклеотида в данной последовательности (собственно, обычно в таком представлении и хранится PWM)[2]:

Номер позиции
Нуклеотид 1 2 3 4 5 6 7 8
A 0,55 0,18 0,09 0,09 0,55 0,55 0,09 0,09
C 0,18 0,09 0,18 0,45 0,27 0,09 0,64 0,18
G 0,09 0,18 0,64 0,36 0,09 0,18 0,09 0,09
T 0,18 0,55 0,09 0,09 0,09 0,18 0,18 0,64

HMM (скрытые марковские модели)

править
 
Скрытая марковская модель нулевого порядка для приведённых выше последовательностей одного мотива. Каждое состояние соответствует одной из позиций, вероятность перехода из одного состояния в другое равна 1. Эмиссионные вероятности для нуклеотидов изображены на состояниях

Для большей точности можно учитывать зависимость соседних позиций в мотиве с помощью скрытых марковских моделей первого и более высоких порядков[2][4]. Этот подход сопряжён с некоторыми трудностями, так как для его применения необходимо наличие достаточно представительной выборки вариантов мотивов. В случае предыдущего примера имеем:

  • Для марковской модели порядка 0 (вероятность появления нуклеотида в данной позиции от других позиций не зависит — другой способ трактовки PWM)[4];
 
Скрытая марковская модель первого порядка для приведённых выше последовательностей одного мотива. Каждое состояние соответствует нуклеотиду в одной из позиций, вероятность перехода из одного состояния во другое равна вероятности появления после нуклеотида, соответствующего этому состоянию, нуклеотида, соответствующего другому
  • Для марковской модели порядка 1 (вероятность появления нуклеотида в данной позиции зависит только от нуклеотида в предыдущей последовательности. Число параметров модели сильно возросло)[4]. При расчёте вероятностей перехода также использовалось правило Лапласа. Эмисионные вероятности для состояний равны 1 для нуклеотидов, которым они соответствуют, 0 — для остальных.

В случае мотивов, содержащих участки переменного размера и нуклеотидного состава, можно было бы вводить отдельно модель для этих участков, отдельно — для консервативных, а затем «склеивать» их в одну модель путём добавления промежуточных «молчащих» состояний и вероятностей перехода в них и из них[4].

СКС (стохастическая контекстно-свободная грамматика)

править

В случае мотивов, формирующих вторичные структуры (РНК-переключатели) в РНК, в элементах вторичной структуры важно учитывать возможность спаривания нуклеотидов. С этой задачей справляются СКС. Однако обучение СКС требует ещё большего размера выборки, чем HMM, и сопряжено с рядом трудностей[4].

Представление для больших базах данных

править

В тех случаях, когда важна скорость поиска и допустим пропуск некоторых вхождений нашего мотива, исследователи прибегают к различным уловкам, позволяющим с приемлемой точностью зашифровать пространственную структур биополимера (РНК или белка) путём расширения алфавита[49].

Представление мотивов в белках с помощью кодирования пространственной структуры белка

править

Оперон Escherichia coli репрессор лактозы LacI (PDB 1lcc chain A) и ген активатор катаболизма (PDB 3gap chain A) оба имеют мотив спираль-поворот-спираль, но их аминокислотные последовательности не очень схожи. Группой исследователей был разработан код, который они назвали «трёхмерный код цепи», представляющий структуру белка в виде строки из писем. Эта схема кодирования, по мнению авторов, показывает сходство между белками гораздо более отчётливо, чем аминокислотные последовательности[49]:

Пример: сравнение двух упомянутых выше белков при помощи этой схемы кодирования[49]:

PDB ID 3D-code Amino acid sequence
1lccA TWWWWWWWKCLKWWWWWWG LYDVAEYAGVSYQTVSRVV
3gapA KWWWWWWGKCFKWWWWWWW RQEIGQIVGCSRETVGRIL
Сравнение Видно явное сходство между белками По аминокислотной последовательности белки сильно отличаются

где W соответствует α-спирали, и E и D соответствует β-нити.

Представление мотивов в РНК с помощью вторичной структуры (foldedBlast)

править

В данной работе с целью применения алгоритма поиска, схожего с BLAST, нуклеотидный алфавит (ATGC, так как поиск осуществлялся в геноме) был расширен за счёт комбинирования нуклеотидов и трех символов, характеризующих их предположительное направление спаривания[50]:

  • ( — нуклеотид спарен с нуклеотидом справа;
  • ) — нуклеотид спарен с нуклеотидом слева;
  • . — нуклеотид не спарен.

Таким образом получалось 12 букв нового алфавита (4 нуклеотида * 3 «направления»), при правильном использовании позволяющий осуществлять BLAST-подобный поиск, названный авторами foldedBlast[50].

Логотип последовательностей

править
 
Мотив сайта связывания пуринового репрессора PurR из Escherichia coli. Получен с помощью пакета R seqLogo

Для визуального представления мотивов часто используют логотип последовательностей — графического представления консервативности каждой позиции в мотиве. При этом данную визуализацию можно успешно применять как и в случае представления мотива в виде консенсуса или позиционной весовой матрицы, так и для представления HMM модели последовательности, как это сделано в базе белковых семейств Pfam[51].

Кроме того, если использовать, к примеру, яркость каждой нуклеотида в мотиве как индикатор того, насколько часто ему соответствует в этом же мотиве комплементарный нуклеотид, то можно частично представлять и информацию о вторичной структуре мотива. Так сделано, например, в биоинформатическом веб-сервисе RegPredict[52].

Поиск сайтов связывания транскрипционных факторов in silico

править

В случае поиска в нуклеотидных последовательностях мотивов, отвечающих за связывание регуляторных белков пользуются соображением, что они [мотивы] меняются сравнительно медленно, а значит, если взять организмы, достаточно далёкие друг от друга, чтобы в высоковариабельных позициях их последовательностей успели накопиться мутации, а сайты измениться сильно ещё не успели, то можно пользоваться правилом «что консервативно — то важно»[2]. После получения последовательностей, в которых предполагается наличия специфичного мотива, в основном используют два подхода к поиску последовательности мотива — филогенетический футпринтинг и сведение задачи к задаче поиска вставленного мотива.

Филогенетический футпринтинг

править

Филогенетический футпринтинг — полуавтоматический метод. Последовательности обрабатываются программой множественного выравнивания, и в получившемся выравнивании исследователем ищутся паттерны, которые можно считать мотивами. Одним из наиболее успешных примеров применения данного подхода можно считать расшифровку способа кодирования нерибосомных пептидов нерибосомными пептид-синтетазами (NRPS)[2][53][54]. Данный метод не позволяет полностью автоматизировать процесс поиска мотивов, но при этом и не имеет столь сильных ограничений, как следующие.

Задача поиска вставленного мотива

править

В случае с мотивами без (почти без) разрывов и без (почти без) участков переменной длины возможно свести задачу поиска мотива к задаче поиска вставленного мотива (англ. Planted motif search)[2][9].

Формулировка задачи следующая: «На вход предоставлены n строк s1, s2, …, sn длины m, каждая составленная из символов алфавита A, и два числа — l и d. Найдите все строки x длины l такие, что любая из предоставленных строки содержит хотя бы одну подпоследовательность, находящуюся от x на расстоянии Хэмминга не больше d»[55].

Так как в общем случае неизвестно, все ли полученные нами последовательности имеют искомый мотив, а также неизвестна его точная длина, то обычно задачу решают эвристическими методами — максимизируя вероятность найденного мотива при данных последовательностях. На этом принципе построены программы MEME[17] и GibbsSampler[56].

Если задать минимальный порог на число последовательностей, в которых должен содержаться мотив, и как-либо ограничить его длину, то можно использовать и точные способы решения данной задачи, к примеру — алгоритм RISOTTO[57]. Некоторые из них позволяют снимать часть ограничений на искомый мотив — в RISOTTO искомый мотив может иметь разрывы, состоять из нескольких частей.

Однако эти методы редко дают результаты лучше, чем MEME и GibbsSamler, а работают они значительно дольше[2][58].

Поиск сайтов связывания in vitro

править

Метод анализа ДНК-белковых взаимодействий, комбинирующий идеи иммунопреципитации хроматина (ChIP) и высокоэффективном секвенировании ДНК (белок пришивается к ДНК, затем кусочки ДНК, пришившиеся к белку отправляются на секвенирование). В ходе работы метода получаются участки длиной около 150 нуклеотидов, которые затем можно анализировать in silico на наличие мотива[59].

ChIP-on-chip

править

Как и в случае использования метода ChIP-seq проводится иммунопреципитации хроматина (ChIP), затем сшивка с белком обращается и полученная ДНК гибридизуется с ДНК-микрочипом. Метод ChIP-on-chip дешевле, чем ChIP-seq, однако сильно уступает последнему в точности[6].

Также метод, основанный на иммунопреципитации хроматина (ChIP). Использование экзонуклеазы фага λ, деградирующей ДНК только с 5'-конца и только в случае отсутствия контакта с белком, позволяет добиваться точности порядка нескольких нуклеотидов в определении положения сайта связывания белка[60].

Итеративный метод поиска нуклеотидных последовательностей, хорошо связывающихся с данным белком[61]. Процедура в общем случае выглядит так:

  1. Интересующий нас белок пришивается к колонке, через которую далее пропускается раствор с набором последовательностей, состоящих из рандомизированного участка и адаптера;
  2. Последовательности, задержавшиеся на колонке клонируют процедуре ПЦР, причем состав реакционной смеси подобран таким образом, чтобы вносить дополнительные ошибки при копировании. Полученные клоны отправляются на новый раунд SELEX;
  3. Через каждые несколько участков условия (pH раствора, его ионная сила) ужесточаются, чтобы на колонке оставались все более и более специфичные к белку последовательности;
  4. Получающиеся на выходе последовательности часто похожи на реальные мотивы связывания белка в живых организмах.

Делается гибридный белок из изучаемого белка и адениновой ДНК-метилтрансферазы Dam[62]. В естественных условиях аденин в большинстве эукариот не метилируется. Когда же гибридный белок связывается с каким-либо сайтом в ДНК организма, метилтрансферазная часть модифицирует аденины в районе этого сайта, что позволяет затем с помощью эндонуклеаз рестрикции выделить участок, на котором с большой долей вероятности находится искомый мотив.

Примечания

править
  1. 1 2 3 D'haeseleer Patrik. What are DNA sequence motifs? (англ.) // Nature Biotechnology. — 2006. — 1 April (vol. 24, iss. 4). — P. 423–425. — ISSN 1087-0156. — doi:10.1038/nbt0406-423. Архивировано 12 апреля 2017 года.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Compeau Phillip, Pevzner Pavel. Bioinformatics Algorithms: An Active Learning Approach, 2nd Ed. Vol. 1 by Phillip Compeau (англ.). — 2nd edition. — Active Learning Publishers, 2015. — 384 p. — ISBN 9780990374619.
  3. 1 2 Koonin Eugene V. The Logic of Chance: The Nature and Origin of Biological Evolution. — 1 edition. — FT Press, 2011-06-23. — 529 с. — ISBN 978-0132542494.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 Durbin Richard, Eddy Sean R., Krogh Anders, Mitchison Graeme. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. — Cambridge University Press, 1998. — 372 с. — ISBN 978-0521620413.
  5. 1 2 Purine repressor - Proteopedia, life in 3D (англ.). proteopedia.org. Дата обращения: 11 апреля 2017. Архивировано 12 апреля 2017 года.
  6. 1 2 3 4 5 6 7 8 Alberts Bruce, Johnson Alexander, Lewis Julian, Raff Martin, Roberts Keith. Molecular Biology of the Cell. — 4th. — Garland Science, 2002-01-01. — ISBN 0815332181. — ISBN 0815340729. Архивировано 27 сентября 2017 года.
  7. 1 2 Pestova T. V., Kolupaeva V. G., Lomakin I. B., Pilipenko E. V., Shatsky I. N. Molecular mechanisms of translation initiation in eukaryotes (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2001. — 19 June (vol. 98, iss. 13). — P. 7029–7036. — ISSN 0027-8424. — doi:10.1073/pnas.111145798. Архивировано 23 апреля 2017 года.
  8. 1 2 Evfratov Sergey A., Osterman Ilya A., Komarova Ekaterina S., Pogorelskaya Alexandra M., Rubtsova Maria P. Application of sorting and next generation sequencing to study 5΄-UTR influence on translation efficiency in Escherichia coli (англ.) // Nucleic Acids Research. — 2017. — 7 April (vol. 45, iss. 6). — P. 3487–3502. — ISSN 0305-1048. — doi:10.1093/nar/gkw1141. Архивировано 12 апреля 2017 года.
  9. 1 2 3 4 5 6 Jones Neil C., Pevzner Pavel A. An Introduction to Bioinformatics Algorithms. — 1 edition. — The MIT Press, 2004. — 435 с. — ISBN 9780262101066.
  10. Gilbert W, Maxam A. The nucleotide sequence of the lac operator (англ.) // Proceedings of the National Academy of Sciences. — 1973. — December (vol. 70, iss. 12). — P. 3581—3584. — PMID 4587255. Архивировано 24 апреля 2017 года.
  11. Maniatis T, Ptashne M, Backman K, Kield D, Flashman S, Jeffrey A, Maurer R. Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda (англ.) // Cell. — 1975. — June (vol. 5, iss. 2). — P. 109—113. — PMID 1095210. Архивировано 24 апреля 2017 года.
  12. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors (англ.) // Proceedings of the National Academy of Sciences. — 1977. — December (vol. 74, iss. 12). — P. 5463—5467. Архивировано 2 апреля 2017 года.
  13. Stormo GD. DNA binding sites: representation and discovery. (англ.) // Bioinformatics. — 2000. — January (vol. 16, iss. 1). — P. 16—23. Архивировано 19 апреля 2017 года.
  14. Stormo GD, Schneider TD, Gold LM. Characterization of translational initiation sites in E. coli (англ.) // Nucleic Acids Research. — 1982. — 11 May (vol. 10, iss. 9). — P. 2971—2996. Архивировано 24 апреля 2017 года.
  15. Galas DJ, Eggert M, Waterman MS. Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. (англ.) // Journal of Molecular Biology. — 1985. — 5 November (vol. 186, no. 1). — P. 117–128. Архивировано 24 апреля 2017 года.
  16. Stormo GD. DNA binding sites: representation and discovery. (англ.) // Bioinformatics. — 2000. — January (vol. 16, no. 1). — P. 16–23. Архивировано 19 апреля 2017 года.
  17. 1 2 T. L. Bailey, C. Elkan. The value of prior knowledge in discovering motifs with MEME (англ.) // Proceedings. International Conference on Intelligent Systems for Molecular Biology. — 1995. — 1 January (vol. 3). — P. 21–29. — ISSN 1553-0833. Архивировано 24 апреля 2017 года.
  18. Lawrence CE1, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. (англ.) // Science. — 1993. — 8 October (vol. 262, no. 5131). — P. 208–214. Архивировано 24 апреля 2017 года.
  19. Jendresen Christian Bille, Martinussen Jan, Kilstrup Mogens. The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery (англ.) // Microbiology (Reading, England). — 2012. — 1 August (vol. 158, iss. 8). — P. 2026–2038. — ISSN 1465-2080. — doi:10.1099/mic.0.059576-0. Архивировано 19 апреля 2017 года.
  20. Sinha Sangita C., Krahn Joseph, Shin Byung Sik, Tomchick Diana R., Zalkin Howard. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation (англ.) // Journal of Bacteriology. — 2003. — 1 July (vol. 185, iss. 14). — P. 4087–4098. — ISSN 0021-9193. — doi:10.1128/JB.185.14.4087-4098.2003. Архивировано 19 апреля 2017 года.
  21. Shine J., Dalgarno L. Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome (англ.) // European Journal of Biochemistry. — 1975. — 1 September (vol. 57, iss. 1). — P. 221–230. — ISSN 0014-2956. Архивировано 19 апреля 2017 года.
  22. 1 2 3 4 5 6 7 Nelson David L., Cox Michael M. Lehninger Principles of Biochemistry. — 7 edition. — W. H. Freeman, 2017-01-01. — 1328 с. — ISBN 9781464126116.
  23. Stormo G. D., Schneider T. D., Gold L. Quantitative analysis of the relationship between nucleotide sequence and functional activity (англ.) // Nucleic Acids Research. — 1986. — 26 August (vol. 14, iss. 16). — P. 6661–6679. — ISSN 0305-1048. Архивировано 19 апреля 2017 года.
  24. Stormo G. D. DNA binding sites: representation and discovery (англ.) // Bioinformatics (Oxford, England). — 2000. — 1 January (vol. 16, iss. 1). — P. 16–23. — ISSN 1367-4803. Архивировано 19 апреля 2017 года.
  25. Shultzaberger Ryan K., Zehua Chen, Lewis Karen A., Schneider Thomas D. Anatomy of Escherichia coli σ 70 promoters (англ.) // Nucleic Acids Research. — 2007. — 1 February (vol. 35, iss. 3). — P. 771–788. — ISSN 1362-4962. — doi:10.1093/nar/gkl956. Архивировано 19 апреля 2017 года.
  26. J. Shine, L. Dalgarno. Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome (англ.) // European Journal of Biochemistry. — 1975. — 1 September (vol. 57, iss. 1). — P. 221—230. — ISSN 0014-2956. Архивировано 19 апреля 2017 года.
  27. Рибопереключатель, РНК-переключатель (riboswitch). humbio.ru. Дата обращения: 11 апреля 2017. Архивировано 12 апреля 2017 года.
  28. Samuel E. Bocobza, Asaph Aharoni. Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae (англ.) // The Plant Journal: For Cell and Molecular Biology. — 2014. — 1 August (vol. 79, iss. 4). — P. 693–703. — ISSN 1365-313X. — doi:10.1111/tpj.12540. Архивировано 19 апреля 2017 года.
  29. Hironori Otaka, Hirokazu Ishikawa, Teppei Morita, Hiroji Aiba. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2011. — 9 August (vol. 108, iss. 32). — P. 13059–13064. — ISSN 0027-8424. — doi:10.1073/pnas.1107050108. Архивировано 3 июля 2022 года.
  30. Hiroshi Yamamoto, Marianne Collier, Justus Loerke, Jochen Ismer, Andrea Schmidt. Molecular architecture of the ribosome‐bound Hepatitis C Virus internal ribosomal entry site RNA (англ.) // The EMBO Journal. — 2015. — 14 December (vol. 34, iss. 24). — P. 3042–3058. — ISSN 0261-4189. — doi:10.15252/embj.201592469.
  31. Камкин Андрей, Каменский Андрей Александрович. Фундаментальная и клиническая физиология. — Academia, 2004-01-01. — 1072 с. — ISBN 5769516755.
  32. "Structural Motifs". EMBL-EBI Train online (англ.). 2011-11-25. Архивировано 12 апреля 2017. Дата обращения: 12 апреля 2017.
  33. Gonter Blobel, Bernhand Dobberstein. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma (англ.) // The Journal of Cell Biology. — 1975. — 1 December (vol. 67, iss. 3). — P. 835–851. — ISSN 0021-9525. Архивировано 2 апреля 2022 года.
  34. Qiu Wang-Ren, Sun Bi-Qian, Xiao Xuan, Xu Zhao-Chun, Chou Kuo-Chen. iPTM-mLys: identifying multiple lysine PTM sites and their different types (англ.) // Bioinformatics (Oxford, England). — 2016. — 15 October (vol. 32, iss. 20). — P. 3116–3123. — ISSN 1367-4811. — doi:10.1093/bioinformatics/btw380. Архивировано 19 апреля 2017 года.
  35. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins (англ.) // Science (New York, N.Y.). — 1988. — 24 June (vol. 240, iss. 4860). — P. 1759–1764. — ISSN 0036-8075. Архивировано 19 апреля 2017 года.
  36. Klug A., Rhodes D. Zinc fingers: a novel protein fold for nucleic acid recognition (англ.) // Cold Spring Harbor Symposia on Quantitative Biology. — 1987. — 1 January (vol. 52). — P. 473–482. — ISSN 0091-7451. Архивировано 19 апреля 2017 года.
  37. Bürglin Thomas R., Affolter Markus. Homeodomain proteins: an update (англ.) // Chromosoma. — 2016. — 1 January (vol. 125). — P. 497–521. — ISSN 0009-5915. — doi:10.1007/s00412-015-0543-8. Архивировано 8 марта 2021 года.
  38. Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins (англ.) // Journal of Molecular Biology. — 1973. — 15 May (vol. 76, iss. 2). — P. 241–256. — ISSN 0022-2836. Архивировано 23 апреля 2017 года.
  39. Nelson Melanie R., Thulin Eva, Fagan Patricia A., Forsén Sture, Chazin Walter J. The EF-hand domain: A globally cooperative structural unit (англ.) // Protein Science : A Publication of the Protein Society. — 2017. — 14 April (vol. 11, iss. 2). — P. 198–205. — ISSN 0961-8368. — doi:10.1110/ps.33302.
  40. Watson James D., Milner-White E. James. A novel main-chain anion-binding site in proteins: the nest. A particular combination of φ,ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions1 (англ.) // Journal of Molecular Biology. — 2002. — 11 January (vol. 315, iss. 2). — P. 171–182. — doi:10.1006/jmbi.2001.5227.
  41. Torrance Gilleain M., David P. Leader, Gilbert David R., Milner-White E. James. A novel main chain motif in proteins bridged by cationic groups: the niche (англ.) // Journal of Molecular Biology. — 2009. — 30 January (vol. 385, iss. 4). — P. 1076–1086. — ISSN 1089-8638. — doi:10.1016/j.jmb.2008.11.007. Архивировано 23 апреля 2017 года.
  42. Milner-White E. J., Poet R. Four classes of beta-hairpins in proteins. (англ.) // Biochemical Journal. — 1986. — 15 November (vol. 240, iss. 1). — P. 289–292. — ISSN 0264-6021.
  43. 1 2 Efimov Alexander V. Favoured structural motifs in globular proteins (англ.) // Structure. — 1994. — 1 November (vol. 2, iss. 11). — P. 999–1002. — doi:10.1016/S0969-2126(94)00102-2.
  44. Holm L., Sander C. Dictionary of recurrent domains in protein structures (англ.) // Proteins. — 1998. — 1 October (vol. 33, iss. 1). — P. 88–96. — ISSN 0887-3585. Архивировано 23 апреля 2017 года.
  45. Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences (англ.) // Nucleic Acids Research. — 1990. — 25 October (vol. 18, iss. 20). — P. 6097–6100. — ISSN 0305-1048. Архивировано 20 апреля 2017 года.
  46. de Castro Edouard, Sigrist Christian J. A., Gattiker Alexandre, Bulliard Virgini, Langendijk-Genevaux Petra S. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins (англ.) // Nucleic Acids Research. — 2006. — 1 July (vol. 34, iss. Web Server issue). — P. W362–365. — ISSN 1362-4962. — doi:10.1093/nar/gkl124. Архивировано 6 октября 2016 года.
  47. InterPro EMBL-EBI. Zinc finger C2H2-type (IPR013087) < InterPro < EMBL-EBI (англ.). www.ebi.ac.uk. Дата обращения: 15 апреля 2017. Архивировано 15 апреля 2017 года.
  48. Флах Петер. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. Учебник. — ДМК Пресс, 2015-01-01. — 400 с. — ISBN 9785970602737, 9781107096394.
  49. 1 2 3 Matsuda H., Taniguchi F., Hashimoto A. An approach to detection of protein structural motifs using an encoding scheme of backbone conformations (англ.) // Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. — 1997. — 1 January. — P. 280–291. — ISSN 2335-6936. Архивировано 23 апреля 2017 года.
  50. 1 2 Tseng Huei-Hun, Weinberg Zasha, Gore Jeremy, Breaker Ronald r., Ruzzo Walter l. Finding non-coding rnas through genome-scale clustering (англ.) // Journal of bioinformatics and computational biology. — 2017. — 12 April (vol. 7, iss. 2). — P. 373–388. — ISSN 0219-7200.
  51. Schuster-Böckler Benjamin, Jörg Schultz, Rahmann Sven. HMM Logos for visualization of protein families (англ.) // BMC Bioinformatics. — 2004. — 1 January (vol. 5). — P. 7. — ISSN 1471-2105. — doi:10.1186/1471-2105-5-7.
  52. Novichkov Pavel S., Rodionov Dmitry A., Stavrovskaya Elena D., Novichkova Elena S., Kazakov Alexey E. RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach (англ.) // Nucleic Acids Research. — 2010. — 1 July (vol. 38, iss. Web Server issue). — P. W299–307. — ISSN 1362-4962. — doi:10.1093/nar/gkq531. Архивировано 24 апреля 2017 года.
  53. Marahiel Mohamed A. Multidomain enzymes involved in peptide synthesis (англ.) // FEBS Letters. — 1992. — 27 July (vol. 307, iss. 1). — P. 40–43. — ISSN 1873-3468. — doi:10.1016/0014-5793(92)80898-Q. Архивировано 12 апреля 2017 года.
  54. Stachelhaus T., Mootz H. D., Marahiel M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases (англ.) // Chemistry & Biology. — 1999. — 1 August (vol. 6, iss. 8). — P. 493–505. — ISSN 1074-5521. — doi:10.1016/S1074-5521(99)80082-9. Архивировано 19 апреля 2017 года.
  55. Keich U., Pevzner P. A. Finding motifs in the twilight zone (англ.) // Bioinformatics (Oxford, England). — 2002. — 1 October (vol. 18, iss. 10). — P. 1374–1381. — ISSN 1367-4803. Архивировано 19 апреля 2017 года.
  56. Thompson William A., Newberg Lee A., Conlan Sean, McCue Lee Ann, Lawrence Charles E. The Gibbs Centroid Sampler (англ.) // Nucleic Acids Research. — 2007. — 1 July (vol. 35, iss. Web Server issue). — P. W232–237. — ISSN 1362-4962. — doi:10.1093/nar/gkm265.
  57. Carvalho A. M., Freitas A. T., Oliveira A. L., Sagot M. F. An efficient algorithm for the identification of structured motifs in DNA promoter sequences (англ.) // IEEE/ACM Transactions on Computational Biology and Bioinformatics. — 2006. — 1 April (vol. 3, iss. 2). — P. 126–140. — ISSN 1545-5963. — doi:10.1109/TCBB.2006.16. Архивировано 8 сентября 2017 года.
  58. Dinh Hieu, Rajasekaran Sanguthevar, Davila Jaime. qPMS7: A Fast Algorithm for Finding (ℓ, d)-Motifs in DNA and Protein Sequences (англ.) // PLOS ONE. — 2012. — 24 July (vol. 7, iss. 7). — ISSN 1932-6203. — doi:10.1371/journal.pone.0041425. Архивировано 15 июня 2022 года.
  59. Johnson David S., Mortazavi Ali, Myers Richard M., Wold Barbara. Genome-wide mapping of in vivo protein-DNA interactions (англ.) // Science (New York, N.Y.). — 2007. — 8 June (vol. 316, iss. 5830). — P. 1497–1502. — ISSN 1095-9203. — doi:10.1126/science.1141319. Архивировано 24 апреля 2017 года.
  60. Rhee Ho Sung, Pugh B. Franklin. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution (англ.) // Cell. — 2011. — 9 December (vol. 147, iss. 6). — P. 1408–1419. — ISSN 1097-4172. — doi:10.1016/j.cell.2011.11.013. Архивировано 24 апреля 2017 года.
  61. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase (англ.) // Science (New York, N.Y.). — 1990. — 3 August (vol. 249, iss. 4968). — P. 505–510. — ISSN 0036-8075. Архивировано 24 апреля 2017 года.
  62. Greil Frauke, Moorman Celine, van Steensel Bas. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase (англ.) // Methods in Enzymology. — 2006. — 1 January (vol. 410). — P. 342–359. — ISSN 0076-6879. — doi:10.1016/S0076-6879(06)10016-6. Архивировано 24 апреля 2017 года.

Литература

править
  • Дурбин Р., Эдди Ш., Крог А., Митчисон Г. Анализ биологических последовательностей = Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. — Регулярная и хаотическая динамика, Институт компьютерных исследований, 2006. — С. 480. — ISBN 5939725597.
  • Jones Neil C., Pevzner Pavel A. An Introduction to Bioinformatics Algorithms (англ.). — The MIT Press, 2004. — ISBN 9780262101066.
  • Compeau Phillip, Pevzner Pavel. Bioinformatics Algorithms: An Active Learning Approach, 2nd Ed. Vol. 1 by Phillip Compeau (англ.). — Active Learning Publishers, 2015. — P. 384. — ISBN 9780990374619.
  • Durbin Richard, Eddy Sean R., Krogh Anders, Mitchison Graeme. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (англ.). — Cambridge University Press, 1998. — P. 372. — ISBN 978-0521620413.
  • Nelson David L., Cox Michael M. Lehninger Principles of Biochemistry (англ.). — W. H. Freeman, 2017. — P. 1328. — ISBN 9781464126116.

Ссылки

править

Видеокурсы по данной теме

править

Сервисы поиска мотивов

править
  • MEME Suite of motif-based sequence analysis tools — сервис для поиска мотивов в последовательностях одноимённым алгоритмом MEME
  • The Gibbs Motif Sampler — сервис для поиска мотивов в последовательностях алгоритмом Gibbs Sampler
  • RISOTTO motif discovery tool — главная страница программы для точного поиска мотивов RISOTTO
  • PMS — точный поиск мотивов при помощи алгоритмов семейства PMS
  • Bioprospector — поиск мотивов в последовательностях алгоритмом Gibbs Sampler
  • XXmotif — сервис для поиск мотивов в нуклеотидных последовательностях на основании прямой оптимизации статистической значимости PWM

Базы данных мотивов

править
  • PROSITE — база данных белковых семейств и доменов
  • TRANSFAC — коммерческая (ограниченный публичный доступ) база данных транскрипционных факторов
  • HOCOMOCO Архивная копия от 6 июня 2013 на Wayback Machine — коллекция траскрипционных факторов человека и мыши
  • Minimotif Miner — поиск коротких известных мотивов

Прочее

править
  • Wikiomic Sequence motifs page — статья о мотивах в последовательностях
  • Cis-analysis — список и короткие описания части программ поиска мотивов в последовательностях