Инвариант Шварца дробно-линейной функции равен нулю. Этот легко проверяемый факт является главным свойством инварианта Шварца. В то время как вторая производная измеряет близость функции к линейной, инвариант Шварца выполняет такую же роль для дробно-линейных функций.
Если — аналитическая функция, а — дробно-линейное отображение, то будет выполняться соотношение , то есть дробно-линейное отображение не меняет инвариант Шварца. С другой стороны, производная Шварца f o g вычисляется по формуле,
инвариантно относительно дробно-линейных преобразований.
Более того, для произвольных, достаточное количество раз дифференцируемых функций f и g
Введём функцию от двух комплексных переменных
.
Рассмотрим выражение
.
Тогда производная Шварца выражается как
Производная Шварца имеет простую формулу для перестановки f и z
.
Выражение имеет следующий смысл: мы рассматриваем как координату, а как функцию. Затем вычисляем Шварциан . Мы предполагаем, что поэтому по теореме об обратной функции действительно является локальной координатой, а (используя это наблюдение, последнее свойство доказывается прямым вычислением).
Рассмотрим обыкновенное дифференциальное уравнение в аналитических функциях вида . Тогда его два линейно независимых решения и удовлетворяют соотношению .