Дифференциальное тождество Бьянки

Тензор Римана удовлетворяет следующему тождеству:

которое называется дифференциальным тождеством Бьянки (или вторым тождеством Бьянки) в дифференциальной геометрии.

Доказательство с использованием специальной системы координат

править

Выберем на многообразии какую-то одну произвольную точку   и докажем равенство (1) в этой точке. Поскольку точка   произвольная, то отсюда будет следовать справедливость тождества (1) на всём многообразии.

В точке   мы можем выбрать такую специальную систему координат, что все символы Кристоффеля (но не их производные) превращаются в ноль в этой точке. Тогда для ковариантных производных в точке   имеем

 

Поскольку

 

то в точке   имеем

 

Циклически переставляя в (4) индексы  , получим ещё два равенства:

 
 

Легко видеть, что при сложении равенств (4), (5) и (6) в левой части уравнения получится левая часть выражения (1), а в правой, учтя коммутативность частных производных, все слагаемые взаимно уничтожаются, и мы получим ноль.

См. также

править