Гравитация с массивным гравитоном

Гравитация с массивным гравитоном — название класса теорий гравитации, в которых частица-переносчик взаимодействия (гравитон) предполагается массивной, примером является релятивистская теория гравитации. Характерная особенность таких теорий — проблема разрыва ван Дама — Вельтмана — Захарова (англ. vDVZ (van Dam-Veltman-Zakharov) discontinuity), то есть наличие конечной разности в предсказаниях предела такой теории при массе гравитона, стремящейся к нулю, и теории с безмассовой частицей с самого начала.

Проблемы массивного гравитона в линейном приближении

править

Общую теорию относительности в линеаризованном пределе можно сформулировать как теорию безмассового поля спина 2 на пространстве Минковского, описываемого симметричным тензором  . Естественным обобщением такой теории является введение в лагранжиан массового члена различного вида. Чаще всего такой член выбирают в виде Паули — Фирца  , что как можно показать, наиболее естественно, однако возможен и другой выбор (типа  ). При этом уравнения движения для гравитационного поля приобретают вид

 

где индексы поднимаются и опускаются метрикой Минковского  ,  оператор д'Аламбера,   — гравитационная постоянная Ньютона,  тензор энергии-импульса источников поля. Дивергенция этих уравнений в силу законов сохранения должна быть равна 0, что даёт   и после подстановки в уравнения и взятия следа

 

Поэтому имеется две различные возможности: либо   — тогда след тензора   не является динамической переменной теории, а всецело определяется следом источника  , либо   и   — динамическая переменная. Первый случай даёт обоснование массовому члену Паули — Фирца, но приводит к следующему выражению для гравитационного поля:

 

где введено краткое обозначение   для интегрального оператора, обратного дифференциальному  , в отличие от

 

в линеаризованной общей теории относительности. Таким образом, получаемая теория имеет две проблемы при  , выражающиеся в неправильной величине гравитационных эффектов от первого слагаемого (1/3 вместо 1/2), а также в стремлении второго из них к бесконечности. Первый отмеченный эффект и носит название разрыва ван Дама — Вельтмана — Захарова по именам первооткрывателей[2][3]. В частности, из-за этого отклонение света в теории   составляет 3/4 величины общей теории относительности, а прецессия перигелия — 2/3[2].

Второй подход приводит к появлению новой динамической степени свободы, которая восстанавливает предсказания до нужного уровня, так как общее решение имеет вид

 

где  , и при   первый и второй член дают 1/3 + 1/6 = 1/2. Но при взаимодействии с материей второй член участвует со знаком, противоположным первому, так что он представляет собой скалярное поле отрицательной энергии (англ. ghostlike field), что вызывает нестабильность теории по отношению к перекачке в него энергии.

Вообще корень проблемы лежит в разложении массивного поля спина 2 по спиральностям и их взаимодействии с веществом. При стремлении массы поля к нулю компоненты спиральности   отделяются от остальных, образуя независимое свободное безмассовое поле Максвелла, но компоненты спиральности   и   остаются зацеплёнными и взаимодействуют с веществом совместно[4]. Ситуацию можно решить добавлением ещё одного скалярного поля, но для восстановления корректного предела оно должно иметь отрицательную энергию, что опять-таки недопустимо в стабильной теории поля.

Более подробный разбор, не ограничивающийся линеаризованным приближением, проведён в работах [4][1].

Примечания

править
  1. 1 2 Thibault Damour, Ian I. Kogan, Antonios Papazoglou. Spherically symmetric spacetimes in massive gravity (англ.) // Physical Review D : journal. — 2003. — Vol. 67. — P. 064009. — doi:10.1103/PhysRevD.67.064009. Архивировано 20 января 2022 года.
  2. 1 2 H. van Dam, M. Veltman. Massive and mass-less Yang-Mills and gravitational fields (англ.) // Nuclear Physics B : journal. — 1970. — Vol. 22, no. 2. — P. 397—411. — doi:10.1016/0550-3213(70)90416-5. Архивировано 1 июня 2013 года. Архивированная копия. Дата обращения: 3 сентября 2009. Архивировано 1 июня 2013 года..
  3. В. И. Захаров. Линеаризованная теория гравитации и масса гравитона // Письма в ЖЭТФ : журнал. — 1970. — Т. 12, № 9. — С. 447—449.
  4. 1 2 David G. Boulware, S. Deser. Can Gravitation Have a Finite Range? (англ.) // Physical Review D : journal. — 1972. — Vol. 6, no. 12. — P. 3368—3382. — doi:10.1103/PhysRevD.6.3368.