Альтернативная алгебра — алгебра над полем, умножение в которой является альтернативным[1]. Каждая ассоциативная алгебра, очевидно, альтернативна, однако существуют и неассоциативные альтернативные алгебры, примером которых являются октавы. Обобщение октав, седенионы, уже не обладают свойством альтернативности.

Связь с алгеброй Мальцева

править

Для альтернативной алгебры и алгебры Мальцева существует аналог теоремы Пуанкаре — Биркгофа — Витта. Имеется следующая взаимосвязь между альтернативными алгебрами и алгебрами Мальцева: замена умножения g(A,B) в альтернативной алгебре M операцией коммутатора [A,B]=g(A,B)-g(B,A), превращает её в алгебру Мальцева  .

Ассоциатор

править

С использованием ассоциатора

 

определяющие альтернативную алгебру тождества примут вид[2]

 
 

для любых элементов   и   Отсюда, в силу полилинейности ассоциатора, несложно получить, что

 
 

Таким образом, в альтернативной алгебре ассоциатор является альтернативной операцией:

 

где   — перестановка элементов     — чётность этой перестановки. Верно и обратное: если ассоциатор альтернативен, то кольцо альтернативно. Именно из-за связи с альтернативностью ассоциатора альтернативные кольца получили такое название.

Аналогично можно показать, что для альтернативности ассоциатора достаточно выполнения любых двух из следующих тождеств:

 
 
 

откуда сразу следует третье из тождеств.

Примечания

править
  1. «Математическая энциклопедия» / Главный редактор И. М. Виноградов. — М.: «Советская энциклопедия», 1979. — Т. 2. — 1104 с. — (51[03] М34). — 148 800 экз.
  2. Жевалков К.А., Слинько А.М., Шестаков И.П., Ширшов А.И., "Кольца, близкие к ассоциативным" М.: Наука, 1978. Глава 2, Параграф 3. стр. 49-55.

Литература

править

См. также

править