Алгебраическое уравнение (полиномиальное уравнение, многочленное уравнение) — уравнение вида

где  — многочлен от переменных , которые называются неизвестными.

Коэффициенты многочлена обычно берутся из некоторого поля , и тогда уравнение называется алгебраическим уравнением над полем .

Степенью алгебраического уравнения называют степень многочлена .

Например, уравнение

является алгебраическим уравнением 7-й степени от 3 переменных (с 3 неизвестными) над полем вещественных чисел.

Связанные определения

править

Значения переменных  , которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Примеры алгебраических уравнений

править
  • Алгебраическое уравнение с одним неизвестным — уравнение вида   где   — натуральное число.
  • Линейное уравнение
    • от одной переменной:  
    • от нескольких переменных:  
  • Квадратное уравнение
    • от одной переменной:  
  • Кубическое уравнение
    • от одной переменной:  
  • Уравнение четвёртой степени
    • от одной переменной:  
  • Уравнение пятой степени
    • от одной переменной:  
  • Уравнение шестой степени
    • от одной переменной:  
  • Возвратное уравнение — алгебраические уравнения вида:   коэффициенты которых, стоящие на симметричных относительно середины позициях, равны, то есть если  , при  .

См. также

править

Примечания

править

Ссылки

править