Формула Плюккера

(перенаправлено с «Формулы Плюккера»)

Формула Плюккера — одна из семейства формул, выведенных немецким математиком и физиком Плюккером в 1830-х годах. Формулы связывают некоторые инварианты алгебраических кривых и инварианты дуальных им кривых. Инвариант, называемый родом и являющийся общим как для кривой, так и для дуальной ей кривой, связан с другими инвариантами похожими формулами. Эти формулы и тот факт, что каждый из этих инвариантов должен быть положительным целым числом, накладывают строгие ограничения на возможные значения инвариантов.

Инварианты Плюккера и базовые уравнения

править

Кривая в этом контексте задаётся невырожденным алгебраическим уравнением в комплексной проективной плоскости. Прямые в этой плоскости соответствуют точкам дуальной проективной плоскости, а прямые, касательные к данной алгебраической кривой C, соответствуют точкам на алгебраической кривой C*, называемой дуальной кривой. Точки же кривой C соответствуют прямым, касательным к C*, так что дуальной кривой для C* будет C.

Первые два инварианта, участвующие в формулах Плюккера — это степень d кривой C и степень d*, называемая классом кривой C. Геометрически d — это число точек пересечения произвольной прямой и C, включая комплексные точки и бесконечно удалённые точки с учётом кратности. Класс d* — это число касательных к C, проходящих через произвольную точку плоскости. Например, коническое сечение имеет и степень, и класс 2. Если у кривой C нет особых точек, первая формула Плюккера утверждает, что

 

но для кривых с особыми точками формулу нужно подправить.

Пусть δ — число обыкновенных двойных точек кривой C, то есть имеющих различные касательные (такие точки называются точками самопересечения[англ.]) или изолированных, а κ — число каспов, то есть точек, имеющих единственную касательную. Если кривая C имеет особенности более высокой степени, то они рассматриваются как несколько особых точек, согласно анализу природы особенности. Например, обыкновенная тройная точка считается как три двойных точки. Опять же, мнимые точки и точки на бесконечности также учитываются. Уточнённая форма первого равенства Плюккера имеет вид

 

Подобным образом, пусть δ* — число обыкновенных двойных точек, а κ* — число каспов кривой C*. Вторая формула Плюккера утверждает, что

 

Геометрически обыкновенная двойная точка кривой C* — прямая, касающаяся кривой в двух точках (бикасательная), а касп кривой C* — точка перегиба.

Первые два уравнения Плюккера имеют двойственные версии:

 
 

Эти четыре равенства, фактически, не являются независимыми, так что любые три могут быть использованы для вывода четвёртого. Если заданы любые три из шести инвариантов d, d*, δ, δ*, κ и κ*, то остальные три можно по ним вычислить.

Наконец, геометрический род кривой C можно определить по формуле

 

Это равенство эквивалентно двойственному

 .

Всего мы имеем четыре независимых уравнения с семью неизвестными, и при задании трёх неизвестных остальные четыре могут быть вычислены.

Кривые без особых точек

править

Важный частный случай — когда кривая C не имеет особых точек, то есть δ и κ равны 0, так что оставшиеся инварианты можно вычислить в терминах исключительно d:

 
 
 
 

Так, например, плоская квартика без особых точек имеет род 3, имеет 28 бикасательных и 24 точки перегиба.

Типы кривых

править

Кривые классифицируются по типам согласно их инвариантам Плюккера. Уравнения Плюккера вместе с тем ограничением, что инварианты должны быть натуральными числами, сильно ограничивают число возможных типов кривых заданной степени. Проективно эквивалентные кривые должны иметь тот же тип, но кривые одного и того же типа, вообще говоря, не эквивалентны проективно. Кривые степени 2 — конические сечения — имеют единственный тип, задаваемый равенствами d=d*=2, δ=δ*=κ=κ*=g=0.

Для кривых степени 3 возможны три типа с инвариантами[1]

Тип d d* δ δ* κ κ* g
(i) 3 6 0 0 0 9 1
(ii) 3 4 1 0 0 3 0
(iii) 3 3 0 0 1 1 0

Кривые типов (ii) и (iii) — это рациональные кубические кривые, с обыкновенной двойной точкой и каспом соответственно. Кривые типа (i) не имеют особых точек (эллиптические кривые).

Для кривых степени 4 существует 10 возможных типов с инвариантами[2]

Тип d d* δ δ* κ κ* g
(i) 4 12 0 28 0 24 3
(ii) 4 10 1 16 0 18 2
(iii) 4 9 0 10 1 16 2
(iv) 4 8 2 8 0 12 1
(v) 4 7 1 4 1 10 1
(vi) 4 6 0 1 2 8 1
(vii) 4 6 3 4 0 6 0
(viii) 4 5 2 2 1 4 0
(ix) 4 4 1 1 2 2 0
(x) 4 3 0 1 3 0 0

Примечания

править
  1. Harold Hilton. Plane Algebraic Curves. — Oxford, 1920. — P. 201.
  2. Hilton, p. 264

Ссылки

править
  • Гриффитс Ф., Харрис Дж. Принципы алгебраической геометрии. — 1982. — Т. 1-2, пер. с англ..
  • Клейман С.Л. Успехи матем. Наук. — 1980. — Т. 35, вып. 6. — С. 69-148.
  • Савелов А.А. Плоские кривые. Систематика, свойства, применения. — Москва: Государственное издательство физико-математической литературы, 1960.
  • Salmon, George. A Treatise on the Higher Plane Curves, 1879, pp. 64ff.