Уда́рная адиабата, или адиаба́та Гюгонио́, адиабата Ра́нкина — Гюгонио́ — математическое соотношение, связывающее термодинамические величины до ударной волны и после. Таким образом, ударная адиабата не описывает сам процесс в ударной волне.

Названо в честь шотландского физика Уильяма Джона Ранкина и французского Пьера-Анри Гюгонио, которые независимо получили это соотношение (опубликовано соответственно в 1870 и 1887—1889 годах[1]).

Ударная адиабата представляет геометрическое место точек возможных конечных состояний вещества за фронтом ударной волны при заданных начальных условиях и описывает эти термодинамические состояния независимо от агрегатного состояния вещества, то есть справедлива для газов, жидкостей и твёрдых тел.

Вывод уравнения ударной адиабаты

править
 
Схема ударной волны в системе координат, связанных с фронтом ударной волны

Рассмотрим законы сохранения на стационарной ударной волне в такой системе отсчёта, в которой ударный фронт покоится:

 
 
 

Здесь   — плотность газа,   — скорость газа относительно ударной волны,   — удельная энтальпия газа,   — поток массы через разрыв, индексами «1» и «2» обозначены состояния среды до и после ударной волны.

Выразим скорость в последнем равенстве через поток массы  , получим уравнение:

 

Исключая из него j с помощью равенства, известного под названием прямая или луч Рэлея — Михельсона (название связано с тем, что это уравнение задаёт прямую линию на плоскости  , где   — удельный объём):

 

приходим к соотношению Ранкина — Гюгонио:

 

Если выразить энтальпию через внутреннюю энергию   как  , то уравнение Ранкина — Гюгонио переходит в следующее выражение:

 

Особенности ударной адиабаты

править

Переход вещества через ударную волну является термодинамически необратимым процессом, поэтому при прохождении через вещество ударной волны удельная энтропия увеличивается. Так, для слабых ударных волн в совершенном газе рост энтропии пропорционален кубу относительного роста давления  

Увеличение энтропии означает наличие диссипации (внутри ударной волны, являющейся узкой переходной зоной, существенны, в частности, вязкость и теплопроводность). Это, в частности, приводит к тому, что тело, движущееся в идеальной жидкости с возникновением ударных волн, испытывает силу сопротивления, то есть для такого движения парадокс Д'Аламбера не имеет места.

Часто ударной адиабатой Гюгонио называют кривую в плоскости   или   определяющую зависимость   от   при заданных начальных значениях   и   При заданных   и   ударная волна, перпендикулярная потоку, определяется всего одним параметром (наклонная ударная волна характеризуется дополнительно значением касательной к её поверхности составляющей скорости): например, если задать   то по адиабате Гюгонио можно найти   а отсюда с использованием вышеприведённых формул — плотность потока   и скорости   и   а из уравнения состояния — температуру и т. д.

Ударную адиабату не следует путать с адиабатой Пуассона, описывающей процесс с постоянной энтропией   то есть такие процессы термодинамически обратимы.

В отличие от адиабаты Пуассона, для которой   уравнение ударной адиабаты нельзя написать в виде   где   — однозначная функция двух аргументов: адиабаты Гюгонио для заданного вещества составляют двухпараметрическое семейство кривых (каждая кривая определяется заданием как   так и  ) тогда как адиабаты Пуассона — однопараметрическое.

Примеры

править

Пусть удельная внутренняя энергия имеет выражение как для идеального газа:

 ,  

Величина   равна   для одноатомного идеального газа,   — для двухатомного,   — для многоатомного. Для смесей возможны также и все промежуточные значения.

Тогда из общего случая легко получить уравнение ударной адиабаты в виде:

 

Правая часть всегда положительна, поэтому и левая часть должна быть положительна, откуда   то есть такой газ может сжиматься ударной волной только менее чем в   раз. Второе начало термодинамики приводит к тому, что     (для всех ударных адиабат), то есть объём вещества после ударной волны может только уменьшаться, а давление — только увеличиваться. (Если   то из уравнения следует   и наоборот. Это соответствует звуковой волне, а не ударной.)

Для сравнения, уравнение изотермы в аналогичной записи:   (закон Бойля — Мариотта).

Примеры для некоторых значений  

При  

При  

При  

При  

Правая часть выражения положительна, поэтому и левая должна быть положительна. Отсюда следует, что одноатомный идеальный газ сжимается ударной волной любой силы менее чем в 4 раза, двухатомный — менее чем в 6 раз, многоатомный — менее чем в 7. При этом в данной модели нет ограничений на повышение давления.

Примечания

править

Литература

править
  • Ландау Л. Д., Лифшиц Е. М. Гидродинамика. — Издание 4-е, стереотипное. — М.: Наука, 1988. — 736 с. — («Теоретическая физика», том VI). — С. 456—459 (§ 85).
  • Крайко А. Н. Краткий курс теоретической газовой динамики. — М.: МФТИ, 2007. — С. 300. — ISBN 978-5-7417-0229-1.
  • Ловля С. А. и др. Закон сохранения энергии // Взрывное дело. — Изд. 2-е. — Москва: Недра, 1976. — С. 37.