Пентагональный гексеконтаэдр

Пентагона́льный гексеконта́эдр (от др.-греч. πέντε — «пять», γωνία — «угол», ἑξήκοντα — «шестьдесят» и ἕδρα — «грань») — полуправильный многогранник (каталаново тело), двойственный курносому додекаэдру. Составлен из 60 одинаковых неправильных пятиугольников.

Пентагональный гексеконтаэдр
«Правый» вариант (вращающаяся модель, 3D-модель)
«Правый» вариант
(вращающаяся модель, 3D-модель)
«Левый» вариант (вращающаяся модель, 3D-модель)
«Левый» вариант
(вращающаяся модель, 3D-модель)
Тип каталаново тело
Свойства выпуклый, изоэдральный, хиральный
Комбинаторика
Элементы
60 граней
150 рёбер
92 вершины
Χ = 2
Грани неправильные пятиугольники:
Грань пентагонального гексеконтаэдра
Конфигурация вершины 20+60(53)
12(55)
Конфигурация грани V3.3.3.3.5
Двойственный многогранник курносый додекаэдр
Классификация
Обозначения gD
Группа симметрии I (хиральная икосаэдрическая)
Логотип Викисклада Медиафайлы на Викискладе

Имеет 92 вершины. В 12 вершинах (расположенных так же, как вершины икосаэдра) сходятся по 5 граней своими острыми углами; в 20 вершинах (расположенных так же, как вершины додекаэдра) сходятся по 3 грани теми тупыми углами, которые дальше от острого; в остальных 60 вершинах две грани сходятся своими тупыми углами, ближними к острому, и одна — тупым углом, дальним от острого.

У пентагонального гексеконтаэдра 150 рёбер — 60 «длинных» и 90 «коротких».

В отличие от большинства других каталановых тел, пентагональный гексеконтаэдр (наряду с пентагональным икоситетраэдром) является хиральным и существует в двух разных зеркально-симметричных (энантиоморфных) вариантах — «правом» и «левом».

Метрические характеристики и углы

править

При определении метрических свойств пентагонального гексеконтаэдра приходится решать кубические уравнения и пользоваться кубическими корнями — тогда как для ахиральных каталановых тел не требуется ничего сложнее квадратных уравнений и квадратных корней. Поэтому пентагональный гексеконтаэдр, в отличие от большинства других каталановых тел, не допускает евклидова построения. То же верно и для пентагонального икоситетраэдра, а также для двойственных им архимедовых тел.

В формулах ниже константа   — единственный вещественный корень[1] уравнения

 

где   — отношение золотого сечения; этот корень равен

 
 
Грань пентагонального гексеконтаэдра

Если три «коротких» стороны грани имеют длину  , то две «длинных» стороны имеют длину

 

Площадь поверхности и объём многогранника при этом выражаются как

 
 

Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен

 

радиус полувписанной сферы (касающейся всех рёбер) —

 

радиус окружности, вписанной в грань —

 

диагональ грани, параллельная одной из «коротких» сторон —

 

Описать около пентагонального гексеконтаэдра сферу — так, чтобы она проходила через все вершины, — невозможно.

Все четыре тупых угла грани равны   острый угол грани (между «длинными» сторонами) равен  

Двугранный угол при любом ребре одинаков и равен  

Примечания

править

Ссылки

править