Параметрическое представление

(перенаправлено с «Параметрическая кривая»)

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.

Пример параметрической кривой.

Параметрическое представление функции

править

Предположим, что функциональная зависимость   от   задана не непосредственно как   а через промежуточную величину  

Тогда формулы:

  

задают параметрическое представление функции одной переменной.

Если предположить, что обе эти функции   и   имеют производные и для   существует обратная функция   явное представление функции выражается через параметрическое как[1]:

 

и производная функции   может быть вычислена как:

 

Параметрическое представление даёт такое важное преимущество, что позволяет изучать неявные функции в тех случаях, когда их приведение к явному виду иначе как через параметры затруднительно или невозможно через элементарные функции.

Параметрическое представление уравнения

править

Параметрическое представление для более общего случая: когда переменные связаны уравнением (или системы уравнений, если переменных больше двух).

Параметрическое уравнение

править

Близкое понятие — параметрическое уравнение[2] множества точек, когда координаты точек задаются как функции от некоторого набора свободных параметров. Если параметр один, мы получим параметрическое уравнение кривой.

  (кривая на плоскости),
  (кривая в 3-мерном пространстве),

Выражая координаты точек поверхности через два свободных параметра, мы получим параметрическое задание поверхности.

Примеры

править

Уравнение окружности имеет вид:

 

Параметрическое уравнение окружности:

   

Гипербола описывается следующим уравнением:

 

Параметрическое уравнение правой ветви гиперболы :

  

См. также

править

Примечания

править
  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Том I. Москва 1969 г. Стр 218.
  2. Математическая энциклопедия. — М.: Советская энциклопедия, 1984. — Т. 5. — С. 221—222.

Ссылки

править