Граница Варша́мова — Ги́лберта — неравенство, определяющее предельные значения для параметров кодов (не обязательно линейных), полученное независимо Эдгаром Гилбертом[англ.] и Ромом Варшамовым. Иногда употребляется название неравенство Гилберта — Шеннона — Варшамова, а в иноязычной научной литературе — неравенство Гилберта — Варшамова.
обозначает максимально возможную мощность -чного кода длины и расстояния Хэмминга (-чным кодом является код с символами из поля, состоящего из элементов).
Тогда для любого существует по крайней мере одно кодовое слово , так что расстояние Хэмминга между и удовлетворяет
потому как в противном случае мы могли бы расширить код с помощью слова , оставив расстояние Хэмминга неизменным, что противоречит предположению относительно максимальной мощности .
потому что мы можем позволить (или выбрать) не более чем -му из компонентов кодового слова принять одно из других возможных значений. Поэтому верно следующее неравенство