Необходимое и достаточное условия

(перенаправлено с «Необходимое и достаточное условие»)

Необходимое условие и достаточное условие — виды условий, логически связанных с некоторым суждением. Различие этих условий используется в логике и математике для обозначения видов связи суждений.

Нахождение в фиолетовой области является достаточным для нахождения в A, но не необходимым. Нахождение в A необходимо для нахождения в фиолетовой области, но не достаточно. Нахождение в A и нахождение в B необходимо и достаточно для нахождения в фиолетовой области.

Необходимое условие

править

Если импликация   является абсолютно истинным высказыванием, то истинность высказывания   является необходимым условием для истинности высказывания  [1][2].

Необходимыми условиями истинности утверждения А называются условия, без соблюдения которых А не может быть истинным.

Суждение P является необходимым условием суждения X, когда из (истинности) X следует (истинность) P. То есть, если P ложно, то заведомо ложно и X.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется свойством (элементов) M.

Достаточное условие

править

Если импликация   является абсолютно истинным высказыванием, то истинность высказывания   является достаточным условием для истинности высказывания  [1][2].

Достаточными называются такие условия, при наличии (выполнении, соблюдении) которых утверждение B является истинным.

Суждение P является достаточным условием суждения X, когда из (истинности) P следует (истинность) X, то есть в случае истинности P проверять X уже не требуется.

Для суждений X типа «объект принадлежит классу M» такое суждение P называется признаком принадлежности классу M.

Необходимое и достаточное условие

править

Суждение K является необходимым и достаточным условием суждения X, когда K является как необходимым условием X, так и достаточным. В этом случае говорят ещё что K и X равносильны, или эквивалентны, и обозначают   или  .

Это следует из тождественно истинной формулы, связывающей импликацию и операцию эквиваленции[3]:

 

Для суждений X типа «объект принадлежит классу M» такое суждение K называется критерием принадлежности классу M.


Вышеперечисленные утверждения о необходимом и достаточном условиях можно наглядно продемонстрировать пользуясь таблицей истинности логических выражений.

Рассмотрим случаи, когда импликация истинна. Действительно, если суждение   является необходимым условием для суждения  , то   обязано быть истинно для истинности импликации, в то же время, суждение   является достаточным условием суждения   значит, что если истинно  , то   обязано быть истинным.

Аналогичные рассуждения работают и обратном случае, когда суждение   является необходимым условием для суждения   и суждение   является достаточным условием суждения  .

Если   является необходимым и достаточным условием  , как видно из таблицы истинности, оба суждения обязаны быть истинны или оба суждения обязаны быть ложными.

Таблица истинности
A B      
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

Пример

править

Суждение X: «Вася получает стипендию в данном ВУЗе».
Необходимое условие P: «Вася — учащийся данного ВУЗа».
Достаточное условие Q: «Вася учится в данном ВУЗе без троек».
Следствие R: «Получать стипендию в данном ВУЗе».

Данную формулу можно изобразить в виде условного силлогизма несколькими способами:

1) формулой: (Q → R) ˄ (R → P) → (Q → P) ;

2) официально принятым форматом:

Если Вася учится без троек в данном ВУЗе, то он получает стипендию.
Если Вася получает стипендию, то он — учащийся данного ВУЗа.
— — — — — — — — —
Если Вася учится без троек в данном ВУЗе, то он — учащийся данного ВУЗа.

3) используя обычные речевые рассуждения:

Из того, что Вася — учащийся, ещё не следует, что он получает стипендию. Но это условие необходимо, то есть если Вася не учащийся, то он заведомо не получает стипендии.

Если же Вася учится в вузе без троек, то он заведомо получает стипендию. Тем не менее, студент Вася может получать стипендию (в виде пособия), если он учится с тройками, но, например, имеет хроническое заболевание.

Общее правило выглядит следующим образом:
В импликации AB:
A — это достаточное условие для B, и
B — это необходимое условие для A.

См. также

править

Примечания

править

Литература

править
  • Эдельман С. Л. Математическая логика. — М.: Высшая школа, 1975. — 176 с.
  • Гиндикин С. Г. Алгебра логики в задачах. — М.: Наука, 1972. — 288 с.

Ссылки

править