Задача Римана о распаде произвольного разрыва
Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва[1]. Полностью решена в ограниченном круге частных случаев — для уравнений газовой динамики идеального газа и некоторых более точных приближений (т. н. газ с двучленным уравнением состояния) и уравнений теории мелкой воды. Решение для уравнений магнитной газовой динамики построимо, по всей видимости, вплоть до необходимости численного решения одного достаточно сложного обыкновенного дифференциального уравнения.
Постановка
правитьРешается одномерная задача о распаде разрыва — то есть полагается, что до начального момента времени две области пространства с различными значениями термодинамических параметров (для газовой динамики это плотность, скорость и давление газа) были разделены тонкой перегородкой, а в начальный момент времени перегородку убирают. Требуется построить решение (то есть зависимость всех термодинамических параметров от времени и координаты) при произвольных начальных значениях переменных.
Решение задачи о распаде произвольного разрыва состоит в определении газодинамического течения, возникающего при . Другими словами, речь идет о решении задачи Коши для уравнений газовой динамики, в которой начальные условия заданы в виде описанного выше произвольного разрыва.
Решение
правитьОказывается, что для систем уравнений, записываемых в дивергентной форме, решение будет автомодельным.
Решение ищется в виде набора элементарных волн, определяющегося структурой системы уравнений. В частности, для газовой динамики это: ударная волна, волна разрежения, контактный разрыв. Приведём решение в явном виде для частного случая покоящегося идеального газа с показателем адиабаты . Пусть в начальный момент давление , плотность и скорость имеют вид:
и — волна идёт направо. Тогда в произвольный момент времени решение имеет вид
Невозмущённое вещество | Волна разрежения | Область между фронтом волны разрежения и контактным разрывом | Область между контактным разрывом и фронтом ударной волны | Невозмущённое вещество | |
Здесь — скорость звука в невозмущенной среде слева, , , , — параметры газа и скорость звука между фронтом ударной волны и контактным разрывом, , , — параметры газа между контактным разрывом и ударной волной, — скорость ударной волны. Эти пять параметров определяются из нелинейной системы уравнений, отвечающих законам сохранения энергии, массы и импульса:
Первые три уравнения здесь соответствуют соотношениям Гюгонио для идеального газа[2], четвёртое и пятое — соотношениям в волне разрежения[3].
Применение
правитьРешение задачи Римана находит применение в численных методах при решении нестационарных задач с большими разрывами. Именно на решении (точном или приближенном) задачи Римана о распаде разрыва основывается метод Годунова решения систем нестационарных уравнений механики сплошной среды.
Примечания
править- ↑ Riemann, Bernhard. über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Deutsch) // Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen. — 1860. — Т. 8. — С. 43-66. Архивировано 24 июля 2020 года.
- ↑ Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. — Москва: Наука, 1966. — С. 51. — 688 с.
- ↑ Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. — Москва: Наука, 1966. — С. 41. — 688 с.