Диагональный аргумент (диагональный метод Кантора) — доказательство теоремы Кантора о том, что множество всех подмножеств данного множества имеет бо́льшую мощность, чем само множество. В частности, множество всех подмножеств натурального ряда имеет мощность большую, чем алеф-0, и, значит, не является счётным[1]. Доказательство этого факта основано на следующем диагональном аргументе:

Диагональный аргумент Кантора: Каждое множество записывается как последовательность 0 и 1, где 1 на месте значит, что является элементом множества. Красным выделена последовательность на диагонали. Последовательность является дополнением этой последовательности: . Тогда отличается от всех хотя бы в одном месте (а именно — в месте ).
Пусть есть взаимнооднозначное соответствие, которое каждому элементу множества ставит в соответствие подмножество множества Пусть будет множеством, состоящим из элементов таких, что (диагональное множество). Тогда дополнение этого множества не может быть ни одним из А следовательно, соответствие было не взаимнооднозначным.

Кантор использовал диагональный аргумент при доказательстве несчётности действительных чисел в 1891 году. (Это не первое его доказательство несчётности действительных чисел, но наиболее простое)[2].

Диагональный аргумент использовался во многих областях математики. Так, например, он является центральным аргументом в теореме Гёделя о неполноте, в доказательстве существования неразрешимого перечислимого множества и, в частности, в доказательстве неразрешимости проблемы остановки[3].

Примечания

править
  1. Диагональный метод Кантора. studfiles.net.
  2. Gray, Robert (1994), "Georg Cantor and Transcendental Numbers" (PDF), American Mathematical Monthly, 101: 819—832, doi:10.2307/2975129, Архивировано (PDF) 21 января 2022, Дата обращения: 15 января 2019 Источник. Дата обращения: 15 января 2019. Архивировано 21 января 2022 года.
  3. John B. Bacon, Michael Detlefsen, David Charles McCarty. Diagonal argument // Logic from A to Z: The Routledge Encyclopedia of Philosophy Glossary of Logical and Mathematical Terms. — Routledge, 2013-09-05. — 126 с. — ISBN 9781134970971.