Д’Аламбер, Жан Лерон

(перенаправлено с «Д'Аламбер, Жан Лерон»)

Жан Леро́н Д’Аламбе́р (д’Аламбер, Даламбер; фр. Jean Le Rond D'Alembert, d'Alembert; 16 ноября 1717 — 29 октября 1783) — французский учёный-энциклопедист. Широко известен как философ, математик и механик.

Жан Лерон Д’Аламбер
фр. Jean Le Rond D'Alembert
Портрет работы М. К. де Латура, 1753
Портрет работы М. К. де Латура, 1753
Имя при рождении фр. Jean Baptiste Louis d’Aremberg[1]
Дата рождения 16 ноября 1717(1717-11-16)
Место рождения Париж
Дата смерти 29 октября 1783(1783-10-29) (65 лет)
Место смерти Париж
Страна  Королевство Франция
Род деятельности философ, математик, физик, музыковед, переводчик, писатель, теоретик музыки, энциклопедисты, инженер, астроном, лексикограф, интеллектуал
Научная сфера математика, механика
Альма-матер
Научный руководитель Léonor Caron[вд][4]
Ученики П. С. Лаплас
Известен как один из авторов «Энциклопедии наук, искусств и ремёсел»
Автограф Изображение автографа
Логотип Викицитатника Цитаты в Викицитатнике
Логотип Викитеки Произведения в Викитеке
Логотип Викисклада Медиафайлы на Викискладе

Член Парижской академии наук (1740), Французской Академии (1754), Лондонского королевского общества (1748)[5], Петербургской академии наук (1764)[6] и других академий.

Биография

править

Д’Аламбер был незаконным сыном маркизы де Тансен[7] и, по всей вероятности, австрийского герцога Леопольда Филиппа Аренберга. Вскоре после рождения младенец был подкинут матерью на ступени парижской «Круглой церкви Св. Иоанна[фр.]», которая располагалась у северной башни Собора Парижской Богоматери. По обычаю, в честь этой церкви ребёнок был назван Жаном Лероном. Вначале ребёнка поместили в Больницу Подкидышей. Затем доверенное лицо герцога артиллерийский офицер Луи-Камю Детуш, получивший деньги для воспитания мальчика, устроил его в семье стекольщика Руссо[8].

Вернувшись во Францию, Детуш привязался к мальчику, часто навещал его, помогал приёмным родителям и оплатил образование Д’Аламбера. Мать-маркиза никакого интереса к сыну так и не проявила. Позднее, став знаменитым, Д’Аламбер никогда не забывал стекольщика и его жену, помогал им материально и всегда с гордостью называл своими родителями.

Фамилия Д’Аламбер, по одним сведениям, произведена из имени его приёмного отца Аламбера, по другим — придумана самим мальчиком или его опекунами: сначала Жан Лерон был записан в школе как Дарамбер (Daremberg), потом сменил это имя на D’Alembert. Название «Даламбер» было предложено Фридрихом Великим для предполагаемой (но не существующей) луны Венеры[9].

1726: Детуш, уже ставший генералом, неожиданно умирает. По завещанию Д’Аламбер получает пособие в 1200 ливров в год и препоручается вниманию родственников. Мальчик воспитывается наряду с двоюродными братьями и сёстрами, но живёт по-прежнему в семье стекольщика. Он жил в доме приёмных родителей до 1765 года, то есть до 48-летнего возраста[10].

Рано проявившийся талант позволил мальчику получить хорошее образование — сначала в коллегии Мазарини (получил степень магистра свободных наук), затем в Академии юридических наук, где он получил звание лиценциата прав. Однако профессия адвоката ему была не по душе, и он стал изучать математику. Он также интересовался медициной.

Уже в возрасте 22 лет Д’Аламбер представил Парижской академии свои сочинения, а в 23 года был избран адъюнктом Академии. В 1746 году он был избран в Берлинскую академию[11], а в 1748 году членом Лондонского Королевского общества[12].

 
«Трактат о динамике» Д’Аламбера

1743: вышел «Трактат о динамике», где сформулирован фундаментальный «Принцип Д’Аламбера», сводящий динамику несвободной системы к статике[13]. Здесь он впервые сформулировал общие правила составления дифференциальных уравнений движения любых материальных систем.

Позже этот принцип был применен им в трактате «Рассуждения об общей причине ветров» (1774) для обоснования гидродинамики, где он доказал существование — наряду с океанскими — также и воздушных приливов[англ.].

1748: блестящее исследование задачи о колебаниях струны.

С 1751 года Д’Аламбер работал вместе с Дидро над созданием знаменитой «Энциклопедии наук, искусств и ремёсел». Статьи 17-томной «Энциклопедии», относящиеся к математике и физике, написаны Д’Аламбером. В 1757 году, не выдержав преследований реакции, которым подвергалась его деятельность в «Энциклопедии» (свою роль сыграл и скандала вокруг его статьи «Женева» в 7-м томе), он отошёл от её издания и целиком посвятил себя научной работе (хотя статьи для «Энциклопедии» продолжал писать и руководить её физико-математическим отделом). «Энциклопедия» сыграла большую роль в распространении идей Просвещения и идеологической подготовке Французской революции.

1754: Д’Аламбер становится членом Французской Академии.

1764: в статье «Размерность» (для Энциклопедии) впервые высказана мысль о возможности рассматривать время как четвёртое измерение.

Д’Аламбер вёл активную переписку с российской императрицей Екатериной II[14]. В середине 1760-х годов Д’Аламбер был приглашён ею в Россию в качестве воспитателя наследника престола, однако приглашения не принял. В 1764 г. был избран иностранным почётным членом Петербургской академии наук[15].

1772: Д’Аламбер избран непременным секретарём Французской Академии[16]. В 1781 году он был избран иностранным почетным членом Американской академии искусств и наук[17].

1783: после долгой болезни Д’Аламбер умер. Церковь отказала «отъявленному атеисту» в месте на кладбище, и его похоронили в общей могиле, ничем не обозначенной.

В честь Д’Аламбера назван кратер на обратной стороне Луны.

Научные достижения

править
 
Статуя Д’Аламбера в Лувре

Математика

править

В первых томах знаменитой «Энциклопедии» Д’Аламбер поместил важные статьи: «Дифференциалы», «Уравнения», «Динамика» и «Геометрия», в которых подробно излагал свою точку зрения на актуальные проблемы науки.

Исчисление бесконечно малых Д’Аламбер стремился обосновать с помощью теории пределов, близкой к ньютоновскому пониманию «метафизики анализа». Он назвал одну величину пределом другой, если вторая, приближаясь к первой, отличается от неё менее чем на любую заданную величину. «Дифференцирование уравнений состоит попросту в том, что находят пределы отношения конечных разностей двух переменных, входящих в уравнение» — эта фраза могла бы стоять и в современном учебнике. Он исключил из анализа понятие актуальной бесконечно малой, допуская его лишь для краткости речи.

Перспективность его подхода несколько снижалась тем, что стремление к пределу он почему-то понимал как монотонное (видимо, чтобы  ), да и внятной теории пределов Д’Аламбер не дал, ограничившись теоремами о единственности предела и о пределе произведения. Большинство математиков (в том числе Лазар Карно) возражали против теории пределов, так как она, по их мнению, устанавливала излишние ограничения — рассматривала бесконечно малые не сами по себе, а всегда в отношении одной к другой, и нельзя было в стиле Лейбница свободно использовать алгебру дифференциалов. И всё же подход Д’Аламбера к обоснованию анализа в конце концов одержал верх — правда, только в XIX веке.

В теории рядов его имя носит широко употребительный достаточный признак сходимости.

Основные математические исследования Д’Аламбера относятся к теории дифференциальных уравнений, где он дал метод решения дифференциального уравнения 2-го порядка в частных производных, описывающего поперечные колебания струны (волнового уравнения). Д’Аламбер представил решение как сумму двух произвольных функций, и по т. н. граничным условиям сумел выразить одну из них через другую. Эти работы Д’Аламбера, а также последующие работы Л. Эйлера и Д. Бернулли составили основу математической физики.

В 1752 году, при решении одного дифференциального уравнения с частными производными эллиптического типа (модель обтекания тела), встретившегося в гидродинамике, Д’Аламбер впервые применил функции комплексного переменного. У Д’Аламбера (а вместе с тем и у Л. Эйлера) встречаются те уравнения, связывающие действительную и мнимую части аналитической функции, которые впоследствии получили название условия Коши — Римана, хотя по справедливости их следовало бы назвать условиями Д’Аламбера — Эйлера. Позже те же методы применялись в теории потенциала. С этого момента начинается широкое и плодотворное использование комплексных величин в гидродинамике.

Д’Аламберу принадлежат также важные результаты в теории обыкновенных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений 1-го и 2-го порядков.

Д’Аламбер дал первое (не вполне строгое) доказательство основной теоремы алгебры. Во Франции она называется теоремой Д’Аламбера — Гаусса.

Физика, механика и другие работы

править

Выше уже упоминался открытый им принцип Д’Аламбера, указавший, как строить математическую модель движения несвободных систем.

Выдающийся вклад Д’Аламбер внёс также в небесную механику. Он обосновал теорию возмущения планет и первым строго объяснил теорию предварения равноденствий и нутации.

Опираясь на систему Фрэнсиса Бэкона, Д’Аламбер классифицировал науки, положив начало современному понятию «гуманитарные науки».

Д’Аламберу принадлежат также работы по вопросам музыкальной теории и музыкальной эстетики: трактат «О свободе музыки», в котором подведены итоги т. н. войны буффонов — борьбы вокруг вопросов оперного искусства, и др.

Философия

править

Из философских работ наиболее важное значение имеют вступительная статья к «Энциклопедии», «Очерк происхождения и развития наук» (1751, рус. пер. в книге «Родоначальники позитивизма», 1910), в которой дана классификация наук, и «Элементы философии» (1759).

В теории познания вслед за Дж. Локком Д’Аламбер придерживался сенсуализма. В решении основных философских вопросов Д’Аламбер склонялся к скептицизму, считая невозможным что-либо достоверно утверждать о Боге, взаимодействии его с материей, вечности или сотворённости материи и т. п. Сомневаясь в существовании Бога и выступая с антиклерикальной критикой, Д’Аламбер, однако, не встал на позиции атеизма.

В отличие от французских материалистов, Д’Аламбер считал, что существуют неизменные, не зависящие от общественной среды нравственные принципы. Взгляды Д’Аламбера по вопросам теории познания и религии были подвергнуты критике со стороны Дидро в произведении: «Сон Д’Аламбера» (1769), «Разговор Д’Аламбера и Дидро» (1769) и др.

Цитаты

править
  • Работайте, работайте — а понимание придёт потом.
  • Я не могу считать законным трату своих избытков, пока другие люди лишены необходимого…
  • Истинное равенство граждан состоит в том, чтобы все они одинаково были подчинены законам.
  • D'Alembert, Jean Le Rond. Traité de dynamique. — 2nd. — Gabay (1990 reprint), 1743.
  • Oeuvres philosophiques, historiques et litteraires. Т. I—XVII, — P., 1805.
  • Œuvres complètes. Т. 1-5. — P., 1821-22. — (Repr. 2002, ISBN 2-271-06013-3).
  • English translation of part of the Encyclopédie of Diderot and d’Alembert.

Переводы на русский язык

править
  • Извлечение из мемуара «О равновесии жидкостей». // Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
  • О фигуре Земли. // В кн.: Клеро А. Теория фигуры Земли, основанная на началах гидростатики. — Л., 1947.
  • Динамика. — М.-Л.: Гостехиздат, 1950. — 315 с. — (Серия: Классики естествознания).
  • История в энциклопедии Дидро и Д’Аламбера / Пер. с франц. и прим. Н. В. Ревуненковой. Под общ. ред. А. Д. Люблинской. — Л.: Наука, 1978. — 312 с.
  • Философия в «Энциклопедии» Дидро и Д’Аламбера. — М.: Наука, 1994. — 720 с. — ISBN 5-02-008196-5

См. также

править
  • Оператор Д’Аламбера — дифференциальный оператор второго порядка где \Delta — оператор Лапласа, c — постоянная. Иногда оператор пишется с противоположным знаком.
  • Парадокс Д’Аламбера — утверждение в гидродинамике идеальной жидкости, согласно которому при стационарном (не обязательно потенциальном и безотрывном) обтекании твёрдого тела безграничным поступательным прямолинейным потоком невязкой жидкости, при условии выравнивания параметров далеко впереди и позади тела, сила сопротивления равна нулю.
  • Признак Д’Аламбера — признак сходимости числовых рядов
  • Принцип Д’Аламбера — один из основных принципов динамики, согласно которому, если к заданным (активным) силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил.
  • Уравнение Д’Аламбера — дифференциальное уравнение вида   где   и   — функции.
  • Формула Д’Аламбера

Примечания

править
  1. https://doi.org/10.4000/rde.4949 — С. 246.
  2. Архив по истории математики Мактьютор — 1994.
  3. Архив по истории математики Мактьютор — 1994.
  4. Mathematics Genealogy Project (англ.) — 1997.
  5. Alembert; Jean le Rond d' (1717 - 1783) // Сайт Лондонского королевского общества (англ.)
  6. Профиль Жана Лерона Д'Аламбера на официальном сайте РАН
  7. История математики / Под редакцией А. П. Юшкевича. В 3-х томах. — М.: Наука, 1970. — Т. III. — С. 71.
  8. Hall, 1906, p. 5.
  9. Ley, Willy. 1952. Article «Moon of Venus» in Galaxy Science Fiction July 1952. MDP Publishing Galaxy Science Fiction Digital Series, 2016. Retrieved from Google Books Архивная копия от 3 августа 2020 на Wayback Machine.
  10. Стиллвелл Д. Математика и её история. — М.-Ижевск: Институт компьютерных исследований, 2004. — С. 270.
  11. Hankins, 1990, p. 26.
  12. Library and Archive Catalogue. Royal Society. Дата обращения: 3 декабря 2010. Архивировано 26 марта 2020 года.
  13. D'Alembert, 1743.
  14. Избранная переписка Д’Аламбера и Екатерины II. Дата обращения: 29 февраля 2008. Архивировано 5 мая 2008 года.
  15. Советский энциклопедический словарь / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1986. — С. 357. — 1600 с. — 2 500 000 экз.
  16. [1] Архивировано 31 мая 2012 года.
  17. Book of Members, 1780–2010: Chapter A. American Academy of Arts and Sciences. Дата обращения: 14 апреля 2011. Архивировано 1 марта 2012 года.

Литература

править

Ссылки

править