Уничтожение данных — последовательность операций, предназначенных для осуществления программными или аппаратными средствами необратимого удаления данных, в том числе остаточной информации.

Как правило, уничтожение данных используются государственными учреждениями, прочими специализированными структурами и предприятиями в целях сохранения государственной или коммерческой тайны. Существует широкий спектр доступных программных средств безопасного уничтожения данных, в том числе программы с открытым исходным кодом. Уничтожение данных используется также в средствах программного шифрования информации для безопасного удаления временных файлов и уничтожения исходных, поскольку в противном случае, используя классическое удаление, существует возможность восстановления исходного файла лицом, желающим получить доступ к личной или секретной информации.

Алгоритмы уничтожения информации стандартизированы, практически во всех ведущих государствах изданы национальные стандарты, нормы и правила, регламентирующие использование программных средств для уничтожения информации и описывающие механизмы его реализации.

Все программные реализации алгоритмов уничтожения данных основаны на простейших операциях записи, тем самым происходит многократная перезапись информации в секторах жесткого диска или блоках SSD-диска ложными данными. В зависимости от алгоритма это может быть сгенерированное генератором псевдослучайных чисел случайное число либо фиксированное значение. Как правило, каждый алгоритм предусматривает запись восьми битовых единиц (#FF) и нуля (#00). В существующих алгоритмах перезапись может производиться от одного до 35 и более раз. Существуют реализации с возможностью произвольного выбора числа циклов перезаписи.

Теоретически, простейшим методом уничтожения исходного файла является его полная перезапись байтами #FF, то есть битовой маской из восьми двоичных единиц (11111111), нулей либо любых других произвольных чисел, тем самым сделав невозможным его программное восстановление доступными пользователю программными средствами. Однако с использованием специализированных аппаратных средств, анализирующих поверхность магнитных и др. носителей информации и позволяющих восстановить исходную информацию исходя из показателей остаточной намагниченности (в случае с магнитными носителями) или др. показателя, существует вероятность, что простейшая перезапись не гарантирует полноценное уничтожение, подлежащей полному уничтожению информации.

С целью исключения любой возможности восстановления и разработаны существующие алгоритмы уничтожения данных.

  • Наиболее известен и распространён алгоритм, применяемый в американском национальном стандарте Министерства обороны DoD 5220.22-M. Вариант E, согласно данному стандарту, предусматривает два цикла записи псевдослучайных чисел и один — фиксированных значений, зависимых от значений первого цикла, четвёртый цикл — сверка записей. В варианте ECE перезапись данных производится 7 раз — 3 раза байтом #FF, три #00 и один #F6[1].
  • В алгоритме Брюса Шнайера: в первом цикле записывается #FF, во втором — #00 и в пяти остальных циклах — псевдослучайные числа. Считается одним из наиболее эффективных.
  • В наиболее медленном, но, по мнению множества экспертов, наиболее эффективном[источник не указан 4170 дней] алгоритме Питера Гутмана, выполняются 35 циклов, в которых записывают все наиболее эффективные битовые маски, данный алгоритм основан на его теории уничтожения информации[2].
Цикл Данные Цикл Данные
1 Псевдослучайные 19 #99
2 Псевдослучайные 20 #AA
3 Псевдослучайные 21 #BB
4 Псевдослучайные 22 #CC
5 #55 23 #DD
6 #AA 24 #EE
7 #92 #49 #24 25 #FF
8 #49 #24 #92 26 #92 #49 #24
9 #24 #92 #49 27 #49 #24 #92
10 #00 28 #24 #92 #49
11 #11 29 #6D #B6 #DB
12 #22 30 #B6 #DB #6D
13 #33 31 #DB #6D #B6
14 #44 32 Псевдослучайные
15 #55 33 Псевдослучайные
16 #66 34 Псевдослучайные
17 #77 35 Псевдослучайные
18 #88
  • В алгоритме, предусмотренном американским национальным стандартом NAVSO P-5239-26 для MFM-кодируемых устройств: в первом цикле записывается #01, во втором — #7FFFFFF, в третьем — последовательность псевдослучайных чисел, в четвёртом проходит верификация. В варианте для RLL — кодируемых устройств данного алгоритма во втором цикле записывается #27FFFFFF
  • В алгоритме, описываемом германским национальным стандартом VSITR, с первого по шестой цикл записываются последовательно байты #00 и #FF, в седьмом #AA.
  • Многими заявляется[уточнить] о существовании алгоритма, описанного российским государственным стандартом ГОСТ P 50739-95, предусматривающего запись #00 в каждый байт каждого сектора для систем с 4-6 класса защиты и запись псевдослучайных чисел в каждый байт каждого сектора для систем 1-3 класса защиты[3]. Однако данный ГОСТ содержит лишь формулировку «Очистка должна производиться путём записи маскирующей информации в память при её освобождении перераспределении», которая не содержит какой-либо детализации относительно порядка перезаписи, количества циклов и битовых масок[4]. В то же время, существует действующий руководящий документ Государственно технической комиссии России «Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации», изданный в 1992 году и предусматривающий ряд требований к механизму уничтожения информации для систем определённых классов защищенности. В частности, для классов 3А и 2A «Очистка осуществляется двукратной произвольной записью в освобождаемую область памяти, ранее использованную для хранения защищаемых данных (файлов)», для класса 1Г предусмотрена однократная перезапись[5].
  • В алгоритме Парагона первый цикл заключается в перезаписи уникальными 512-битными блоками, используя криптографически безопасный генератор случайных чисел. Затем — во втором цикле — каждый перезаписываемый блок переписывается своим двоичным дополнением. Третий цикл повторяет первый цикл с новыми уникальными случайными блокам. В четвёртом цикле происходит перезапись байтом #AA. Завершается уничтожение информации циклом верификации.

Как правило, для затруднения программного восстановления информации перезапись информации в отдельном файле согласно алгоритму уничтожения сопровождается установкой нулевого размера файла и его переименованием, используя произвольный набор символов. Затем следует удаление файла из таблицы размещения файлов.

Примечания

править
  1. [pcsupport.about.com/od/termsd/g/dod-5220-22-M.htm Описание стандарта DoD 5220.22-M] Источник. Дата обращения: 24 июля 2014. Архивировано из оригинала 9 августа 2016 года. (англ.)
  2. Описание Алгоритма П. Гутмана Архивная копия от 6 июня 2016 на Wayback Machine (англ.)
  3. «След на воде». Дата обращения: 2 июня 2008. Архивировано из оригинала 8 августа 2014 года.
  4. ГОСТ P 50739-95 Средства вычислительной техники. Защита от несанкционированного доступа к информации. Общие технические требования. Дата обращения: 24 июля 2014. Архивировано 5 марта 2016 года.
  5. Руководящий документ Гостехкомиссии России «Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации», 1992 год. Дата обращения: 24 июля 2014. Архивировано из оригинала 4 марта 2016 года.

Ссылки

править